Quarto-quartic birational maps of ℙ3(ℂ)

2017 ◽  
Vol 28 (05) ◽  
pp. 1750037
Author(s):  
Julie Déserti ◽  
Frédéric Han

We construct a determinantal family of quarto-quartic transformations of a complex projective space of dimension [Formula: see text] from trigonal curves of degree [Formula: see text] and genus [Formula: see text]. Moreover, we show that the variety of [Formula: see text]-birational maps of [Formula: see text] has at least four irreducible components and describe three of them.

2002 ◽  
Vol 66 (3) ◽  
pp. 465-475 ◽  
Author(s):  
J. Bolton ◽  
C. Scharlach ◽  
L. Vrancken

In a previous paper it was shown how to associate with a Lagrangian submanifold satisfying Chen's equality in 3-dimensional complex projective space, a minimal surface in the 5-sphere with ellipse of curvature a circle. In this paper we focus on the reverse construction.


1995 ◽  
Vol 54 (2) ◽  
pp. 137-143
Author(s):  
Sung-Baik Lee ◽  
Seung-Gook Han ◽  
Nam-Gil Kim ◽  
Masahiro Kon

1993 ◽  
Vol 114 (3) ◽  
pp. 443-451
Author(s):  
Al Vitter

Stable holomorphic vector bundles over complex projective space ℙnhave been studied from both the differential-geometric and the algebraic-geometric points of view.On the differential-geometric side, the stability ofE-→ ℙncan be characterized by the existence of a unique hermitian–Einstein metric onE, i.e. a metric whose curvature matrix has trace-free part orthogonal to the Fubini–Study Kähler form of ℙn(see [6], [7], and [13]). Very little is known about this metric in general and the only explicit examples are the metrics on the tangent bundle of ℙnand the nullcorrelation bundle (see [9] and [10]).


2013 ◽  
Vol 56 (2) ◽  
pp. 306-316 ◽  
Author(s):  
Juan de Dios Pérez ◽  
Young Jin Suh

AbstractWe prove the non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is Lie 𝔻-parallel and satisfies a further condition.


Sign in / Sign up

Export Citation Format

Share Document