scholarly journals Corwin–Greenleaf multiplicity function for compact extensions of the Heisenberg group

2018 ◽  
Vol 29 (09) ◽  
pp. 1850056
Author(s):  
Majdi Ben Halima ◽  
Anis Messaoud

Let [Formula: see text] be the [Formula: see text]-dimensional Heisenberg group and [Formula: see text] a closed subgroup of [Formula: see text] acting on [Formula: see text] by automorphisms such that [Formula: see text] is a Gelfand pair. Let [Formula: see text] be the semidirect product of [Formula: see text] and [Formula: see text]. Let [Formula: see text] be the respective Lie algebras of [Formula: see text] and [Formula: see text], and [Formula: see text] the natural projection. For coadjoint orbits [Formula: see text] and [Formula: see text], we denote by [Formula: see text] the number of [Formula: see text]-orbits in [Formula: see text], which is called the Corwin–Greenleaf multiplicity function. In this paper, we give two sufficient conditions on [Formula: see text] in order that [Formula: see text] For [Formula: see text], assuming furthermore that [Formula: see text] and [Formula: see text] are admissible and denoting respectively by [Formula: see text] and [Formula: see text] their corresponding irreducible unitary representations, we also discuss the relationship between [Formula: see text] and the multiplicity [Formula: see text] of [Formula: see text] in the restriction of [Formula: see text] to [Formula: see text]. Especially, we study in Theorem 4 the case where [Formula: see text]. This inequality is interesting because we expect the equality as the naming of the Corwin–Greenleaf multiplicity function suggests.

2015 ◽  
Vol 26 (10) ◽  
pp. 1550084 ◽  
Author(s):  
Majdi Ben Halima ◽  
Anis Messaoud

Let G = K ⋉ ℝn, where K is a compact connected subgroup of O(n) acting on ℝn by rotations. Let 𝔤 ⊃ 𝔨 be the respective Lie algebras of G and K, and pr : 𝔤* → 𝔨* the natural projection. For admissible coadjoint orbits [Formula: see text] and [Formula: see text], we denote by [Formula: see text] the number of K-orbits in [Formula: see text], which is called the Corwin–Greenleaf multiplicity function. Let π ∈ Ĝ and [Formula: see text] be the unitary representations corresponding, respectively, to [Formula: see text] and [Formula: see text] by the orbit method. In this paper, we investigate the relationship between [Formula: see text] and the multiplicity m(π, τ) of τ in the restriction of π to K. If π is infinite-dimensional and the associated little group is connected, we show that [Formula: see text] if and only if m(π, τ) ≠ 0. Furthermore, for K = SO(n), n ≥ 3, we give a sufficient condition on the representations π and τ in order that [Formula: see text].


1999 ◽  
Vol 51 (1) ◽  
pp. 96-116 ◽  
Author(s):  
Margit Rösler ◽  
Michael Voit

AbstractIfGis a closed subgroup of a commutative hypergroupK, then the coset spaceK/Gcarries a quotient hypergroup structure. In this paper, we study related convolution structures onK/Gcoming fromdeformations of the quotient hypergroup structure by certain functions onKwhich we call partial characters with respect toG. They are usually not probability-preserving, but lead to so-called signed hypergroups onK/G. A first example is provided by the Laguerre convolution on [0, ∞[, which is interpreted as a signed quotient hypergroup convolution derived from the Heisenberg group. Moreover, signed hypergroups associated with the Gelfand pair (U(n, 1),U(n)) are discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1781
Author(s):  
Samer Al Ghour

In this paper, we first define soft u-open sets and soft s-open as two new classes of soft sets on soft bitopological spaces. We show that the class of soft p-open sets lies strictly between these classes, and we give several sufficient conditions for the equivalence between soft p-open sets and each of the soft u-open sets and soft s-open sets, respectively. In addition to these, we introduce the soft u-ω-open, soft p-ω-open, and soft s-ω-open sets as three new classes of soft sets in soft bitopological spaces, which contain soft u-open sets, soft p-open sets, and soft s-open sets, respectively. Via soft u-open sets, we define two notions of Lindelöfeness in SBTSs. We discuss the relationship between these two notions, and we characterize them via other types of soft sets. We define several types of soft local countability in soft bitopological spaces. We discuss relationships between them, and via some of them, we give two results related to the discrete soft topological space. According to our new concepts, the study deals with the correspondence between soft bitopological spaces and their generated bitopological spaces.


2017 ◽  
Vol 16 (11) ◽  
pp. 1750205
Author(s):  
Özge Öztekin ◽  
Naime Ekici

Let [Formula: see text] be the free nilpotent Lie algebra of finite rank [Formula: see text] [Formula: see text] and nilpotency class [Formula: see text] over a field of characteristic zero. We give a characterization of central automorphisms of [Formula: see text] and we find sufficient conditions for an automorphism of [Formula: see text] to be a central automorphism.


2004 ◽  
Vol 95 (2) ◽  
pp. 517-550 ◽  
Author(s):  
William M. Grove

This article first explains concepts in taxometrics, including the meaning of “taxon” in relation to taxometric procedures. It then mathematically develops the MAXSLOPE procedure of Grove and Meehl which relies on nonlinear regression of one taxometric indicator variable on another. Sufficient conditions for MAXSLOPE's validity are set forth. The relationship between the point of maximum regression slope (MAXSLOPE point) and the HITMAX cut, i.e., the point on a variable which, if used as a diagnostic cut-off score, yields maximum classification accuracy, is analyzed. A sufficient condition is given for the MAXSLOPE point to equal the HITMAX cut; however, most distributions have different MAXSLOPE and HITMAX points. Equations and an algorithm are spelled out for making a graphical test for the existence of a taxon, estimating taxometric parameters, and conducting consistency tests; the latter serve as stringent checks on the validity of a taxonic conjecture. The plausibility of assumptions made, in deriving MAXSLOPE equations, is discussed, and the qualitative effects of violations of these assumptions are explained.


2020 ◽  
Vol 51 (2) ◽  
pp. 81-99
Author(s):  
Mohammad M.H Rashid

Let $M_C=\begin{pmatrix} A & C \\ 0 & B \\ \end{pmatrix}\in\LB(\x,\y)$ be be an upper triangulate Banach spaceoperator. The relationship between the spectra of $M_C$ and $M_0,$ and theirvarious distinguished parts, has been studied by a large number of authors inthe recent past. This paper brings forth the important role played by SVEP,the {\it single-valued extension property,} in the study of some of these relations. In this work, we prove necessary and sufficient conditions of implication of the type $M_0$ satisfies property $(w)$ $\Leftrightarrow$ $M_C$ satisfies property $(w)$ to hold. Moreover, we explore certain conditions on $T\in\LB(\hh)$ and $S\in\LB(\K)$ so that the direct sum $T\oplus S$ obeys property $(w)$, where $\hh$ and $\K$ are Hilbert spaces.


1983 ◽  
Vol 15 (4) ◽  
pp. 752-768 ◽  
Author(s):  
W. Henderson

This paper is concerned with the relationship between insensitivity in a certain class of Markov processes and properties of that process when time is reversed. Necessary and sufficient conditions for insensitivity are established and linked to already proved results. A number of examples of insensitive systems are given.


1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


2020 ◽  
Vol 24 ◽  
pp. 39-55
Author(s):  
Julyan Arbel ◽  
Olivier Marchal ◽  
Hien D. Nguyen

We investigate the sub-Gaussian property for almost surely bounded random variables. If sub-Gaussianity per se is de facto ensured by the bounded support of said random variables, then exciting research avenues remain open. Among these questions is how to characterize the optimal sub-Gaussian proxy variance? Another question is how to characterize strict sub-Gaussianity, defined by a proxy variance equal to the (standard) variance? We address the questions in proposing conditions based on the study of functions variations. A particular focus is given to the relationship between strict sub-Gaussianity and symmetry of the distribution. In particular, we demonstrate that symmetry is neither sufficient nor necessary for strict sub-Gaussianity. In contrast, simple necessary conditions on the one hand, and simple sufficient conditions on the other hand, for strict sub-Gaussianity are provided. These results are illustrated via various applications to a number of bounded random variables, including Bernoulli, beta, binomial, Kumaraswamy, triangular, and uniform distributions.


Sign in / Sign up

Export Citation Format

Share Document