Properties of the compressibility and transport motion in wall-bounded turbulent flows at Mach 8

Author(s):  
Xin Li ◽  
Siyuan Zhang ◽  
Junyi Duan ◽  
Xiaobo Liu ◽  
Wanghao Wu

The compressibility effect and transport motion in highspeed turbulent boundary layer (TBL) is a fundamental problem because they dominate the average and statistical characteristics. Using the statistical methods and flow visualization technology, flat-plate TBLs at [Formula: see text] with high- and low-wall temperatures, [Formula: see text] and 1.9, are investigated based on the direct numerical simulation (DNS) datasets. Compared with previous studies, this study considers relative higher Mach number and strong cold wall temperature condition at the same time. First, the turbulent Mach number and turbulent intensity show that the compressibility effects are enhanced by the cooling process. Second, the high-order statistical moments and structure parameters confirm cold wall that causes stronger compressibility and the corresponding increased intensities of local streamwise and wall-normal transport motions. Finally, for uncovering the relationship between the compressibility effect and turbulent transport, more in-depth visualization analyses of velocity streaks are performed. It is found that ‘knot-like’ structures are generated when cooling the wall, and they lead to stronger intermittent, which results in the rapid increase of local compressibility effect and the wall-normal transport motion. Our research sheds light on providing a theoretical basis for further understanding the compressibility effects of TBL at high Mach number.

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 34
Author(s):  
Hechmi Khlifi ◽  
Adnen Bourehla

This work focuses on the performance and validation of compressible turbulence models for the pressure-strain correlation. Considering the Launder Reece and Rodi (LRR) incompressible model for the pressure-strain correlation, Adumitroaie et al., Huang et al., and Marzougui et al., used different modeling approaches to develop turbulence models, taking into account compressibility effects for this term. Two numerical coefficients are dependent on the turbulent Mach number, and all of the remaining coefficients conserve the same values as in the original LRR model. The models do not correctly predict the compressible turbulence at a high-speed shear flow. So, the revision of these models is the major aim of this study. In the present work, the compressible model for the pressure-strain correlation developed by Khlifi−Lili, involving the turbulent Mach number, the gradient, and the convective Mach numbers, is used to modify the linear mean shear strain and the slow terms of the previous models. The models are tested in two compressible turbulent flows: homogeneous shear flow and the newly developed plane mixing layers. The predicted results of the proposed modifications of the Adumitroaie et al., Huang et al., and Marzougui et al., models and of its universal versions are compared with direct numerical simulation (DNS) and experiment data. The results show that the important parameters of compressibility in homogeneous shear flow and in the mixing layers are well predicted by the proposal models.


Author(s):  
Christian Eichler ◽  
Thomas Sattelmayer

Premixed combustion of hydrogen-rich mixtures involves the risk of flame flashback through wall boundary layers. For laminar flow conditions, the flashback mechanism is well understood and is usually correlated by a critical velocity gradient at the wall. Turbulent transport inside the boundary layer considerably increases the flashback propensity. Only tube burner setups have been investigated in the past and thus turbulent flashback limits were only derived for a fully-developed Blasius wall friction profile. For turbulent flows, details of the flame propagation in proximity to the wall remain unclear. This paper presents results from a new experimental combustion rig, apt for detailed optical investigations of flame flashbacks in a turbulent wall boundary layer developing on a flat plate and being subject to an adjustable pressure gradient. Turbulent flashback limits are derived from the observed flame position inside the measurement section. The fuels investigated cover mixtures of methane, hydrogen and air at various mixing ratios. The associated wall friction distributions are determined by RANS computations of the flow inside the measurement section with fully resolved boundary layers. Consequently, the interaction between flame back pressure and incoming flow is not taken into account explicitly, in accordance with the evaluation procedure used for tube burner experiments. The results are compared to literature values and the critical gradient concept is reviewed in light of the new data.


2019 ◽  
Vol 77 (6) ◽  
pp. 1739-1755 ◽  
Author(s):  
A. Nigro ◽  
C. De Bartolo ◽  
A. Crivellini ◽  
M. Franciolini ◽  
A. Colombo ◽  
...  

2000 ◽  
Vol 421 ◽  
pp. 229-267 ◽  
Author(s):  
JONATHAN B. FREUND ◽  
SANJIVA K. LELE ◽  
PARVIZ MOIN

This work uses direct numerical simulations of time evolving annular mixing layers, which correspond to the early development of round jets, to study compressibility effects on turbulence in free shear flows. Nine cases were considered with convective Mach numbers ranging from Mc = 0.1 to 1.8 and turbulence Mach numbers reaching as high as Mt = 0.8.Growth rates of the simulated mixing layers are suppressed with increasing Mach number as observed experimentally. Also in accord with experiments, the mean velocity difference across the layer is found to be inadequate for scaling most turbulence statistics. An alternative scaling based on the mean velocity difference across a typical large eddy, whose dimension is determined by two-point spatial correlations, is proposed and validated. Analysis of the budget of the streamwise component of Reynolds stress shows how the new scaling is linked to the observed growth rate suppression. Dilatational contributions to the budget of turbulent kinetic energy are found to increase rapidly with Mach number, but remain small even at Mc = 1.8 despite the fact that shocklets are found at high Mach numbers. Flow visualizations show that at low Mach numbers the mixing region is dominated by large azimuthally correlated rollers whereas at high Mach numbers the flow is dominated by small streamwise oriented structures. An acoustic timescale limitation for supersonically deforming eddies is found to be consistent with the observations and scalings and is offered as a possible explanation for the decrease in transverse lengthscale.


Author(s):  
Omid Abouali ◽  
Mohammad M. Alishahi ◽  
Homayoon Emdad ◽  
Goodarz Ahmadi

A 3-D Thin Layer Navier-Stokes (TLNS) code for solving viscous supersonic flows is developed. The new code uses several numerical algorithms for space and time discretization together with appropriate turbulence modeling. Roe’s method is used for discretizing the convective terms and the central differencing scheme is employed for the viscous terms. An explicit time marching technique and a finite volume space discretization are used. The developed computational model can handle both laminar and turbulent flows. The Baldwin-Lomax model and Degani-Schiff modifications are used for turbulence modeling. The computational model is applied to a hypersonic laminar flow at Mach 7.95 around a cone at different incidence angles. The circumferential pressure distribution is compared with the experimental data. The cross-sectional Mach number contours are also presented. It is shown that in addition to the outer shock, a cross-flow shock wave is also present in the flow field. The cases of supersonic turbulent flows with Mach number 3 around a tangent-ogive with incidence angles of 6° and a secant-ogive with incidence angles of 10° are also studied. The circumferential pressure distributions are compared with the experimental data and the Euler code results and good agreement is obtained. The cross-sectional Mach number contours are also presented. It is shown that in this case also in addition to the outer shock, a cross-flow shock wave is also present at the incidence angle of 10°.


Author(s):  
Chungpyo Hong ◽  
Toru Yamada ◽  
Yutaka Asako ◽  
Mohammad Faghri ◽  
Koichi Suzuki ◽  
...  

This paper presents experimental results on flow characteristics of laminar, transitional to turbulent gas flows through micro-channels. The experiments were performed for three micro-channels. The micro-channels were etched into silicon wafers, capped with glass, and their hydraulic diameter are 69.48, 99.36 and 147.76 μm. The pressure was measured at seven locations along the channel length to determine local values of Mach number and friction factor for a wide range of flow regime from laminar to turbulent flow. Flow characteristics in transitional flow regime to turbulence were obtained. The result shows that f·Re is a function of Mach number and higher than incompressible value due to the compressibility effect. The values of f·Re were compared with f·Re correlations in available literature.


2007 ◽  
Vol 111 (1126) ◽  
pp. 797-806 ◽  
Author(s):  
G. Doig ◽  
T. J. Barber ◽  
E. Leonardi ◽  
A. J. Neely

Abstract The influence of flow compressibility on a highly-cambered inverted aerofoil in ground effect is presented, based on two-dimensional computational studies. This type of problem has relevance to open-wheel racing cars, where local regions of high-speed subsonic flow form under favourable pressure gradients, even though the maximum freestream Mach number is typically considerably less than Mach 0·3. An important consideration for CFD users in this field is addressed in this paper: the freestream Mach number at which flow compressibility significantly affects aerodynamic performance. More broadly, for aerodynamicists, the consequences of this are also considered. Comparisons between incompressible and compressible CFD simulations are used to identify important changes to the flow characteristics caused by density changes, highlighting the inappropriateness of incompressible simulations of ground effect flows for freestream Mach numbers as low as 0·15.


Author(s):  
Masoud Darbandi ◽  
Shidvash Vakilipour

In this work, we extend a numerical tool capable of solving compressible and incompressible gas flows to study the momentum and heat transfer rates in micro/nano channels with high aspect ratio (L/H = 8000), where the compressibility effect is dominant. The constant heat flux thermal boundary condition is firstly applied at the wall. Next, the flow regime is extended to the early transition regime employing a high order slip velocity boundary condition based on the kinetic theory assumptions. The accuracy of the present results in the slip flow regimes is evaluated against other available theoretical and experimental results. The thermal and compressibility effects on the pressure and Knudsen number distribution are extensively studied along the channel at early transition regimes up to Kn = 0.5. Likely, this Knudsen is the highest one to be reached via applying the foregoing boundary conditions.


1996 ◽  
Vol 313 ◽  
pp. 131-145 ◽  
Author(s):  
A. Shajii ◽  
J. P. Freidberg

The properties of a relatively uncommon regime of fluid dynamics, low Mach number compressible flow are investigated. This regime, which is characterized by an exceptionally large channel aspect ratio L/d ∼ 106 leads to highly subsonic flows in which friction dominates inertia. Even so, because of the large aspect ratio, finite pressure, temperature, and density gradients are required, implying that compressibility effects are also important. Analytical results are presented which show, somewhat unexpectedly, that for forced channel flow, steady-state solutions exist only below a critical value of heat input. Above this value the flow reverses against the direction of the applied pressure gradient causing fluid to leave both the inlet and outlet implying that the related concepts of a steady-state friction factor and heat transfer coefficient have no validity.


Sign in / Sign up

Export Citation Format

Share Document