NUMERICAL ANALYSIS OF GUTs PREDICTIONS IN THE LIGHT OF RECENT RESULTS FROM LEP
We find numerical best fit for sin 2 Θw(MZ), unifying mass MX and the proton lifetime τp as the outcome of analysis where experimental values of Z boson mass MZ, strong coupling constant αs(MZ) and electromagnetic coupling α0(MZ) are taken as the only input parameters. It is found that simple nonsupersymmetric models are unlikely to be realistic ones. On the other hand, we find the best numerical fit: sin 2Θw(MZ = 0.2330 ± 0.0007 (theor.) ± 0.0027 (exp.) , [Formula: see text] yr for supersymmetric unified theories with three generations. The central values require, however, that the supersymmetric mass Λs≲300 GeV . Possibilities of increasing this limit as well as cases with four generations and threshold effects are also discussed. Compact formulas for theoretical and experimental uncertainties involved in the analysis are also produced.