scholarly journals ANISOTROPIC NULL STRING COSMOLOGIES

1998 ◽  
Vol 13 (39) ◽  
pp. 3169-3177 ◽  
Author(s):  
IOANNIS GIANNAKIS ◽  
K. KLEIDIS ◽  
A. KUIROUKIDIS ◽  
D. PAPADOPOULOS

We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers if c2 — the worldsheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth- and first-order solutions and we discuss some cosmological implications.

1995 ◽  
Vol 10 (32) ◽  
pp. 2479-2484 ◽  
Author(s):  
H.J. DE VEGA ◽  
I. GIANNAKIS ◽  
A. NICOLAIDIS

We study quantum strings in strong gravitational fields. The relevant small parameter is [Formula: see text] where Rc is the curvature of the spacetime and T0 is the string tension. Within our systematic expansion we obtain to zeroth-order the null string (string with zero tension), while the first-order correction incorporates the string dynamics. We apply our formalism to quantum null strings in de Sitter spacetime. After a reparametrization of the worldsheet coordinates, the equations of motion are simplified. The quantum algebra generated by the constraints is considered, ordering the momentum operators to the right of the coordinate operators. No critical dimension appears. It is anticipated, however, that the conformal anomaly will appear when the first-order corrections proportional to T0, are introduced.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


Author(s):  
Amarjot Singh Bhullar ◽  
Gospel Ezekiel Stewart ◽  
Robert W. Zimmerman

Abstract Most analyses of fluid flow in porous media are conducted under the assumption that the permeability is constant. In some “stress-sensitive” rock formations, however, the variation of permeability with pore fluid pressure is sufficiently large that it needs to be accounted for in the analysis. Accounting for the variation of permeability with pore pressure renders the pressure diffusion equation nonlinear and not amenable to exact analytical solutions. In this paper, the regular perturbation approach is used to develop an approximate solution to the problem of flow to a linear constant-pressure boundary, in a formation whose permeability varies exponentially with pore pressure. The perturbation parameter αD is defined to be the natural logarithm of the ratio of the initial permeability to the permeability at the outflow boundary. The zeroth-order and first-order perturbation solutions are computed, from which the flux at the outflow boundary is found. An effective permeability is then determined such that, when inserted into the analytical solution for the mathematically linear problem, it yields a flux that is exact to at least first order in αD. When compared to numerical solutions of the problem, the result has 5% accuracy out to values of αD of about 2—a much larger range of accuracy than is usually achieved in similar problems. Finally, an explanation is given of why the change of variables proposed by Kikani and Pedrosa, which leads to highly accurate zeroth-order perturbation solutions in radial flow problems, does not yield an accurate result for one-dimensional flow. Article Highlights Approximate solution for flow to a constant-pressure boundary in a porous medium whose permeability varies exponentially with pressure. The predicted flowrate is accurate to within 5% for a wide range of permeability variations. If permeability at boundary is 30% less than initial permeability, flowrate will be 10% less than predicted by constant-permeability model.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


1995 ◽  
Vol 62 (3) ◽  
pp. 685-691 ◽  
Author(s):  
F. Ma ◽  
T. K. Caughey

The coefficients of a linear nonconservative system are arbitrary matrices lacking the usual properties of symmetry and definiteness. Classical modal analysis is extended in this paper so as to apply to systems with nonsymmetric coefficients. The extension utilizes equivalence transformations and does not require conversion of the equations of motion to first-order forms. Compared with the state-space approach, the generalized modal analysis can offer substantial reduction in computational effort and ample physical insight.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630011 ◽  
Author(s):  
Alejandro Corichi ◽  
Irais Rubalcava-García ◽  
Tatjana Vukašinac

In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad [Formula: see text] and a [Formula: see text] connection [Formula: see text]. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein–Hilbert–Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space [Formula: see text] is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.


2010 ◽  
Vol 656 ◽  
pp. 337-341 ◽  
Author(s):  
PAOLO LUCHINI ◽  
FRANÇOIS CHARRU

Section-averaged equations of motion, widely adopted for slowly varying flows in pipes, channels and thin films, are usually derived from the momentum integral on a heuristic basis, although this formulation is affected by known inconsistencies. We show that starting from the energy rather than the momentum equation makes it become consistent to first order in the slowness parameter, giving the same results that have been provided until today only by a much more laborious two-dimensional solution. The kinetic-energy equation correctly provides the pressure gradient because with a suitable normalization the first-order correction to the dissipation function is identically zero. The momentum equation then correctly provides the wall shear stress. As an example, the classical stability result for a free falling liquid film is recovered straightforwardly.


2009 ◽  
Vol 23 (14) ◽  
pp. 3159-3177
Author(s):  
CARLOS E. REPETTO ◽  
OSCAR P. ZANDRON

By using the Hubbard [Formula: see text]-operators as field variables along with the supersymmetric version of the Faddeev–Jackiw symplectic formalism, a family of first-order constrained Lagrangians for the t-J model is found. In order to satisfy the Hubbard [Formula: see text]-operator commutation rules satisfying the graded algebra spl(2,1), the number and kind of constraints that must be included in a classical first-order Lagrangian formalism for this model are presented. The model is also analyzed via path-integral formalism, where the correlation-generating functional and the effective Lagrangian are constructed. In this context, the introduction of a proper ghost field is needed to render the model renormalizable. The perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator arising in the present formalism is discussed. As an example, the thermal softening of the magnon frequency is computed.


1989 ◽  
Vol 111 (4) ◽  
pp. 626-629
Author(s):  
W. Ying ◽  
R. L. Huston

In this paper the dynamic behavior of beam-like mechanism systems is investigated. The elastic beam is modeled by finite rigid segments connected by joint springs and dampers. The equations of motion are derived using Kane’s equations. The nonlinear terms are linearized by first order perturbation about a system balanced configuration state leading to geometric stiffness matrices. A simple numerical example of a rotating cantilever beam is presented.


1983 ◽  
Vol 27 (01) ◽  
pp. 13-33
Author(s):  
Francis Noblesse

A new slender-ship theory of wave resistance is presented. Specifically, a sequence of explicit slender-ship wave-resistance approximations is obtained. These approximations are associated with successive approximations in a slender-ship iterative procedure for solving a new (nonlinear integro-differential) equation for the velocity potential of the flow caused by the ship. The zeroth, first, and second-order slender-ship approximations are given explicitly and examined in some detail. The zeroth-order slender-ship wave-resistance approximation, r(0) is obtained by simply taking the (disturbance) potential, ϕ, as the trivial zeroth-order slender-ship approximation ϕ(0) = 0 in the expression for the Kochin free-wave amplitude function; the classical wave-resistance formulas of Michell [1]2 and Hogner [2] correspond to particular cases of this simple approximation. The low-speed wave-resistance formulas proposed by Guevel [3], Baba [4], Maruo [5], and Kayo [6] are essentially equivalent (for most practical purposes) to the first-order slender-ship low-Froude-number approximation, rlF(1), which is a particular case of the first-order slender-ship approximation r(1): specifically, the first-order slender-ship wave-resistance approximation r(1) is obtained by approximating the potential ϕ in the expression for the Kochin function by the first-order slender-ship potential ϕ1 whereas the low-Froude-number approximation rlF(1) is associated with the zero-Froude-number limit ϕ0(1) of the potentialϕ(1). A major difference between the first-order slender-ship potential ϕ(1) and its zero-Froude-number limit ϕ0(1) resides in the waves that are included in the potential ϕ(1) but are ignored in the zero-Froude-number potential ϕ0(1). Results of calculations by C. Y. Chen for the Wigley hull show that the waves in the potential ϕ(1) have a remarkable effect upon the wave resistance, in particular causing a large phase shift of the wave-resistance curve toward higher values of the Froude number. As a result, the first-order slender-ship wave-resistance approximation in significantly better agreement with experimental data than the low-Froude-number approximation rlF(1) and the approximations r(0) and rM.


Sign in / Sign up

Export Citation Format

Share Document