scholarly journals QUANTUM EVOLUTION OF INHOMOGENEITIES IN CURVED SPACE

1999 ◽  
Vol 14 (10) ◽  
pp. 1633-1650 ◽  
Author(s):  
H. C. REIS

We obtain the renormalized equations of motion for matter and semiclassical gravity in an inhomogeneous space–time. We use the functional Schrödinger picture and a simple Gaussian approximation to analyze the time evolution of the λϕ4 model, and we establish the renormalizability of this nonperturbative approximation. We also show that the energy–momentum tensor in this approximation is finite once we consider the usual mass and coupling constant renormalizations, without the need of further geometrical counterterms.

1996 ◽  
Vol 11 (21) ◽  
pp. 3957-3971 ◽  
Author(s):  
H.C. REIS ◽  
O.J.P. ÉBOLI

We study the λɸ4 field theory in a flat Robertson-Walker space-time using the functional Schrödinger picture. We introduce a simple Gaussian approximation to analyze the time evolution of pure states and we establish the renormalizability of the approximation. We also show that the energy–momentum tensor in this approximation is finite once we consider the usual mass and coupling constant renormalizations.


2016 ◽  
Vol 13 (08) ◽  
pp. 1640002 ◽  
Author(s):  
J. W. van Holten

A covariant Hamiltonian formalism for the dynamics of compact spinning bodies in curved space-time in the test-particle limit is described. The construction allows a large class of Hamiltonians accounting for specific properties and interactions of spinning bodies. The dynamics for a minimal and a specific non-minimal Hamiltonian is discussed. An independent derivation of the equations of motion from an appropriate energy–momentum tensor is provided. It is shown how to derive constants of motion, both background-independent and background-dependent ones.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


1987 ◽  
Vol 02 (05) ◽  
pp. 1591-1615 ◽  
Author(s):  
V.A. BEREZIN

A method for the phenomenological description of particle production is proposed. Correspondingly modified equations of motion and energy-momentum tensor are obtained. In order to illustrate this method we reconsider from the new point of view of (i) the C-field Hoyle-Narlikar cosmology, (ii) the influence of the particle production process on metric inside the event horizon of a charged black hole and (iii) a nonsingular cosmological model.


Pramana ◽  
2003 ◽  
Vol 60 (6) ◽  
pp. 1161-1169
Author(s):  
K. G. Arun ◽  
Minu Joy ◽  
V. C. Kuriakose

Sign in / Sign up

Export Citation Format

Share Document