Effects of multi-phase optimal velocity function on a lattice model accounting for driver’s behavior

2019 ◽  
Vol 33 (22) ◽  
pp. 1950248
Author(s):  
Nikita Madaan ◽  
Sapna Sharma

In this paper, the effect of multi-phase optimal velocity (OV) on a lattice model accounting for driver’s characteristics in a unidirectional traffic system is investigated. From theoretical analysis, it is found that the presence of aggressive drivers enlarges the stability region on the phase diagram in density-sensitive phase plane. As the number of stages in multi-phase transition is closely related to the number of critical points, two stage (three-phase) OV function is considered and the simulation is carried out to find the effect of sensitivity and drivers behavior on traffic dynamics. Further, with the variation of traffic density, multiple phase transitions are reported which not only depend on sensitivity but are also strongly influenced by the driver’s characteristics. Finally, the numerical simulations are performed which verify the theoretical findings.

2016 ◽  
Vol 27 (10) ◽  
pp. 1650111
Author(s):  
Yi Liu ◽  
Rong-Jun Cheng ◽  
Yan-Qiang Ma ◽  
Hong-Xia Ge

Based on multi-phase car-following model proposed by Nagatani, the control theory method is used to analyze the stability of the model. The optimal velocity function is improved to have more turning points. The original optimal velocity with one turning point shows two-phase traffic, while the improved model with [Formula: see text] turning points exhibits [Formula: see text] phase traffic. Control signal is added into the model. Numerical simulation is conducted to show the results for the stability of the model with and without control signal.


2015 ◽  
Vol 29 (04) ◽  
pp. 1550006 ◽  
Author(s):  
Guanghan Peng

In this paper, a new lattice model is proposed with the consideration of the multiple optimal current differences for two-lane traffic system. The linear stability condition and the mKdV equation are obtained with the considered multiple optimal current differences effect by making use of linear stability analysis and nonlinear analysis, respectively. Numerical simulation shows that the multiple optimal current differences effect can efficiently improve the stability of two-lane traffic flow. Furthermore, the three front sites considered, is the optimal state of two-lane freeway.


2013 ◽  
Vol 336-338 ◽  
pp. 561-565
Author(s):  
Kang Li Chen ◽  
Zhi Peng Li

In this paper, an extended traffic flow model which considers the strategy of the backward power cooperation is proposed by taking account of the power assist of the nearest rear car. The stability condition of the new model is derived by using the linear stability theory with finding that the power assist of the nearest rear car can stabilize the traffic flow and efficiently suppress traffic jams. Moreover, the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic density waves in the unstable region by using the reductive perturbation method and nonlinear analysis..


2015 ◽  
Vol 29 (28) ◽  
pp. 1550174 ◽  
Author(s):  
Guanghan Peng

In this paper, a new lattice model is proposed with the consideration of the driver’s anticipation effect with passing for two-lane traffic system. The linear stability condition and the mKdV equation which are correlative to the driver’s anticipation effect with passing are derived from linear stability analysis and nonlinear analysis, respectively. Numerical simulation shows that the driver’s anticipation effects with passing can efficiently enhance the stability of traffic flow under lane changing on two-lane highway.


2002 ◽  
Vol 753 ◽  
Author(s):  
R. Sakidja ◽  
S. Kim ◽  
J. S. Park ◽  
J. H. Perepezko

ABSTRACTThe effect of transition metal substitution for Mo on the phase stability and multi-phase microstructures in the Mo-Si-B ternary system has been examined. The metal-rich portion of the ternary Mo-Si-B system at equilibrium is comprised of thermally stable BCC Mo(ss) phase, a ternary-based Mo5SiB2 (T2 phase), binary-based metal-rich silicides (Mo3Si [the A15 phase] and Mo5Si3 [the T1 phase]) and borides (Mo2B and MoB phases). Systematic alloying with selected transition metals which are substitutional in both Mo(ss) and T2 phases such as Cr, V, Nb, W, Ti and Hf, has been performed to elucidate the roles of the substitution on the stability of the three phase fields of Mo(ss) + T2 + A15 and T2+ T1 + A15. The potential of the alloying effects on the microstructure design and control of the solidification pathways is further detailed.


2015 ◽  
Vol 26 (06) ◽  
pp. 1550062 ◽  
Author(s):  
Geng Zhang ◽  
Di-Hua Sun ◽  
Min Zhao ◽  
Wei-Ning Liu ◽  
Sen-Lin Cheng

A new lattice model is proposed by taking the average density difference effect into account for two-lane traffic system according to Transportation Cyber-physical Systems. The influence of average density difference effect on the stability of traffic flow is investigated through linear stability theory and nonlinear reductive perturbation method. The linear analysis results reveal that the unstable region would be reduced by considering the average density difference effect. The nonlinear kink–antikink soliton solution derived from the mKdV equation is analyzed to describe the properties of traffic jamming transition near the critical point. Numerical simulations confirm the analytical results showing that traffic jam can be suppressed efficiently by considering the average density difference effect for two-lane traffic system.


1999 ◽  
Vol 96 (9) ◽  
pp. 1335-1339 ◽  
Author(s):  
ALAN E. VAN GIESSEN, DIRK JAN BUKMAN, B.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1259
Author(s):  
Francisco G. Montoya ◽  
Raúl Baños ◽  
Alfredo Alcayde ◽  
Francisco Manuel Arrabal-Campos ◽  
Javier Roldán Roldán Pérez

This paper presents a new framework based on geometric algebra (GA) to solve and analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The proposed approach is an exploratory application of the geometric algebra power theory (GAPoT) to multiple-phase systems. A definition of geometric apparent power for three-phase systems, that complies with the energy conservation principle, is also introduced. Power calculations are performed in a multi-dimensional Euclidean space where cross effects between voltage and current harmonics are taken into consideration. By using the proposed framework, the current can be easily geometrically decomposed into active- and non-active components for current compensation purposes. The paper includes detailed examples in which electrical circuits are solved and the results are analysed. This work is a first step towards a more advanced polyphase proposal that can be applied to systems under real operation conditions, where unbalance and asymmetry is considered.


Sign in / Sign up

Export Citation Format

Share Document