BIDIRECTIONAL QUANTUM SECURE DIRECT COMMUNICATION IN DRIVEN CAVITY QED

2009 ◽  
Vol 23 (27) ◽  
pp. 3225-3234 ◽  
Author(s):  
CHUAN-JIA SHAN ◽  
JI-BING LIU ◽  
WEI-WEN CHENG ◽  
TANG-KUN LIU ◽  
YAN-XIA HUANG ◽  
...  

A theoretical scheme of bidirectional quantum secure direct communication is proposed in the context of driven cavity QED. We first present an entanglement swapping scheme in cavities where two atoms without previous interaction can be entangled with a success probability of unity. Then, based on a novel property of entanglement swapping, we propose a bidirectional quantum secure direct communication protocol, in which two legitimate users can exchange their different secret messages simultaneously in a direct way. The probability of success in our scheme is 1.0. This scheme does not involve apparent (or direct) Bell-state measurements and is insensitive to the cavity decay and the thermal field.

2007 ◽  
Vol 05 (03) ◽  
pp. 359-366 ◽  
Author(s):  
CHUAN-JIA SHAN ◽  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA ◽  
TANG-KUN LIU

We propose a scheme for the teleportation of an arbitrary two-atom entangled state |ϕ〉12 = a|gg〉12 + b|ge〉12 + c|eg〉12 + d|ee〉12 in driven QED. Two pairs of maximally two-atom entangled state are required as the quantum channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. Meanwhile this approach can be used to teleport the unknown multipartite GHZ state. The probability of success in our scheme can reach 1.0.


2007 ◽  
Vol 18 (03) ◽  
pp. 343-349 ◽  
Author(s):  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA ◽  
ZHAN-JUN ZHANG

We propose a scheme to secret sharing of an unknown N-atom entangled state in driven cavity QED. The scheme needs only atomic Bell states as the quantum channels and joint Bell-state measurement is unnecessary. In addition, the scheme is insensitive to the cavity decay and the thermal field.


2007 ◽  
Vol 05 (06) ◽  
pp. 837-843 ◽  
Author(s):  
ZHI HE ◽  
CHAO-YUN LONG ◽  
SHUI-JIE QIN ◽  
GAO-FENG WEI

We proposed a scheme to implement the entanglement swapping based on cavity QED. Using this scheme, we can obtain the entanglement swapping with the success probability of 100% for a two atoms system and a three atoms system respectively, and the entanglement swapping is insensitive to both the cavity decay and thermal field.


2006 ◽  
Vol 04 (02) ◽  
pp. 341-346 ◽  
Author(s):  
MING YANG ◽  
ZHUO-LIANG CAO

A teleportation scheme for unknown atomic states is proposed in cavity QED. The Bell state measurement is not needed in the teleportation process, and the success probability can reach 1.0. In addition, the current scheme is insensitive to the cavity decay and thermal field.


2006 ◽  
Vol 04 (04) ◽  
pp. 627-631 ◽  
Author(s):  
YAN ZHAO ◽  
MING YANG ◽  
ZHUO-LIANG CAO

We propose a scheme for teleporting unknown atomic entangled states in cavity QED. With the assistance of a strong classical field, the photon number dependent parts in the effective Hamiltonian are canceled. Thus, the scheme is insensitive to both the cavity decay and the thermal field. In addition, our scheme does not require the Bell-state measurement directly and the success probability can reach 1.0 in our scheme.


2008 ◽  
Vol 06 (06) ◽  
pp. 1255-1262 ◽  
Author(s):  
CHUAN-JIA SHAN ◽  
JI-BING LIU ◽  
WEI-WEN CHENG ◽  
TANG-KUN LIU ◽  
YAN-XIA HUANG ◽  
...  

We study entanglement swapping and quantum communication in the context of cavity QED. We first present an entanglement swapping scheme in cavities where two atoms without interacting previously can be entangled with the success probability unity. Then, conditioned on a novel property of entanglement swapping, we propose a secure direct communication protocol, in which two legitimate users can communicate deterministically.


2008 ◽  
Vol 22 (13) ◽  
pp. 2129-2137
Author(s):  
JIN-MING LIU ◽  
YI-CAI WANG ◽  
XIAO-QI XIAO

We present two schemes for probabilistically teleporting a two-atom entangled state using a three-atom partially entangled state as the quantum channel in cavity QED with the help of separate atomic measurements. The first scheme is only based on the interaction between two driven atoms and a quantized cavity mode in the large detuning limit, so the effects of both cavity decay and the thermal field are eliminated. In the second scheme, it is necessary to introduce an additional resonant cavity besides the thermal cavity to realize the teleportation, and the corresponding success probability is improved.


2010 ◽  
Vol 08 (03) ◽  
pp. 457-464
Author(s):  
CHUAN-JIA SHAN ◽  
TAO CHEN ◽  
JI-BING LIU ◽  
TANG-KUN LIU ◽  
YAN-XIA HUANG ◽  
...  

An experimentally feasible new scheme for quantum secure direct communication is proposed in cavity quantum electrodynamics without apparent joint Bell-state measurement. The legitimate user can receive different secret messages in a direct way through Einstein–Podolsky–Rosen (EPR) pairs, the probability of the success in our scheme is unity. In the communication processes, the interactions between atoms and a single-mode non-resonant cavity with the assistance of a strong classical driving field substitute the joint measurements. Hence, this scheme needs only separate measurements. In addition, the scheme is insensitive to the cavity decay and the thermal field. The discussion of the scheme indicates that it can be realized based on current technologies.


2007 ◽  
Vol 21 (15) ◽  
pp. 923-927
Author(s):  
KUANG-WEI XIONG

We propose a feasible scheme for teleporting an unknown atomic state by using non-maximally entangled states in cavity QED. The distinct advantage of the scheme is that, not only can the teleportation and distillation procedure be realized simultaneously, but the scheme is also insensitive to the cavity decay and thermal field with the assistance of a strong classical driving field. In addition, the joint Bell-state measurement can be distinguished via detecting the atomic state.


Sign in / Sign up

Export Citation Format

Share Document