Computed tomography reconstruction on distributed storage using hybrid regularization approach

2019 ◽  
Vol 33 (06) ◽  
pp. 1950063 ◽  
Author(s):  
Shailendra Tiwari ◽  
Kavkirat Kaur ◽  
Yadunath Pathak ◽  
Shivendraa Shivani ◽  
Kuldeep Kaur

Computed Tomography (CT) is considered as a significant imaging tool for clinical diagnoses. Due to low-dose radiation in CT, the projection data is highly affected by Gaussian noise which may lead to blurred images, staircase effect, loss of basic fine structure and detailed information. Therefore, there is a demand for an approach that can eliminate noise and can provide high-quality images. To achieve this objective, this paper presents a new statistical image reconstruction method by proposing a suitable regularization approach. The proposed regularization is a hybrid approach of Complex Diffusion and Shock filter as a prior term. To handle the problem of prominent Gaussian noise as well as ill-posedness, the proposed hybrid regularization is further combined with the standard Maximum Likelihood Expectation Maximization (MLEM) reconstruction algorithm in an iterative manner and has been referred to as the proposed CT-Reconstruction (CT-R) algorithm here after. Besides, considering the large sizes of image data sets for medical imaging, distributed storage for images have been employed on Hadoop Distributed File System (HDFS) and the proposed MLEM algorithms have been deployed for improved performance.The proposed method has been evaluated on both the simulated and real test phantoms. The final results are compared with the other standard methods and it is observed that the proposed method has many desirable properties such as better noise robustness, less computational cost and enhanced denoising effect.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lu-zhen Deng ◽  
Peng Feng ◽  
Mian-yi Chen ◽  
Peng He ◽  
Quang-sang Vo ◽  
...  

Compressive sensing (CS) theory has great potential for reconstructing CT images from sparse-views projection data. Currently, total variation (TV-) based CT reconstruction method is a hot research point in medical CT field, which uses the gradient operator as the sparse representation approach during the iteration process. However, the images reconstructed by this method often suffer the smoothing problem; to improve the quality of reconstructed images, this paper proposed a hybrid reconstruction method combining TV and non-aliasing Contourlet transform (NACT) and using the Split-Bregman method to solve the optimization problem. Finally, the simulation results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection using less iteration numbers, which is more effective in suppressing noise and artefacts than algebraic reconstruction technique (ART) and TV-based reconstruction method.


2021 ◽  
Vol 7 (6) ◽  
pp. 99
Author(s):  
Daniela di Serafino ◽  
Germana Landi ◽  
Marco Viola

We are interested in the restoration of noisy and blurry images where the texture mainly follows a single direction (i.e., directional images). Problems of this type arise, for example, in microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems, the Directional Total Generalized Variation (DTGV) was developed by Kongskov et al. in 2017 and 2019, in the case of impulse and Gaussian noise. In this article we focus on images corrupted by Poisson noise, extending the DTGV regularization to image restoration models where the data fitting term is the generalized Kullback–Leibler divergence. We also propose a technique for the identification of the main texture direction, which improves upon the techniques used in the aforementioned work about DTGV. We solve the problem by an ADMM algorithm with proven convergence and subproblems that can be solved exactly at a low computational cost. Numerical results on both phantom and real images demonstrate the effectiveness of our approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hsuan-Ming Huang ◽  
Ing-Tsung Hsiao

Background and Objective. Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques.Methods. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively.Results. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method.Conclusions. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.


Recent applications of conventional iterative coordinate descent (ICD) algorithms to multislice helical CT reconstructions have shown that conventional ICD can greatly improve image quality by increasing resolution as well as reducing noise and some artifacts. However, high computational cost and long reconstruction times remain as a barrier to the use of conventional algorithm in the practical applications. Among the various iterative methods that have been studied for conventional, ICD has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a fast model-based iterative reconstruction algorithm using spatially nonhomogeneous ICD (NH-ICD) optimization. The NH-ICD algorithm speeds up convergence by focusing computation where it is most needed. The NH-ICD algorithm has a mechanism that adaptively selects voxels for update. First, a voxel selection criterion VSC determines the voxels in greatest need of update. Then a voxel selection algorithm VSA selects the order of successive voxel updates based upon the need for repeated updates of some locations, while retaining characteristics for global convergence. In order to speed up each voxel update, we also propose a fast 3-D optimization algorithm that uses a quadratic substitute function to upper bound the local 3-D objective function, so that a closed form solution can be obtained rather than using a computationally expensive line search algorithm. The experimental results show that the proposed method accelerates the reconstructions by roughly a factor of three on average for typical 3-D multislice geometries.


2021 ◽  
pp. 1-19
Author(s):  
Wei Wang ◽  
Xiang-Gen Xia ◽  
Chuanjiang He ◽  
Zemin Ren ◽  
Jian Lu

In this paper, we present an arc based fan-beam computed tomography (CT) reconstruction algorithm by applying Katsevich’s helical CT image reconstruction formula to 2D fan-beam CT scanning data. Specifically, we propose a new weighting function to deal with the redundant data. Our weighting function ϖ ( x _ , λ ) is an average of two characteristic functions, where each characteristic function indicates whether the projection data of the scanning angle contributes to the intensity of the pixel x _ . In fact, for every pixel x _ , our method uses the projection data of two scanning angle intervals to reconstruct its intensity, where one interval contains the starting angle and another contains the end angle. Each interval corresponds to a characteristic function. By extending the fan-beam algorithm to the circle cone-beam geometry, we also obtain a new circle cone-beam CT reconstruction algorithm. To verify the effectiveness of our method, the simulated experiments are performed for 2D fan-beam geometry with straight line detectors and 3D circle cone-beam geometry with flat-plan detectors, where the simulated sinograms are generated by the open-source software “ASTRA toolbox.” We compare our method with the other existing algorithms. Our experimental results show that our new method yields the lowest root-mean-square-error (RMSE) and the highest structural-similarity (SSIM) for both reconstructed 2D and 3D fan-beam CT images.


Author(s):  
Genwei Ma ◽  
Xing Zhao ◽  
Yining Zhu ◽  
Huitao Zhang

Abstract To solve the problem of learning based computed tomography (CT) reconstruction, several reconstruction networks were invented. However, applying neural network to tomographic reconstruction still remains challenging due to unacceptable memory space requirement. In this study, we presents a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which, respectively, correspond to the filter and back-projection of FBP method. The first module of LBRN decouples the relationship of Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection module, can use the block reconstruction strategy. Due to each image block is only connected with part filtered projection data, the network structure is greatly simplified and the parameters of the whole network is dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest (ROI), metal artifacts reduction and real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3941 ◽  
Author(s):  
Li ◽  
Cai ◽  
Wang ◽  
Zhang ◽  
Tang ◽  
...  

Limited-angle computed tomography (CT) image reconstruction is a challenging problem in the field of CT imaging. In some special applications, limited by the geometric space and mechanical structure of the imaging system, projections can only be collected with a scanning range of less than 90°. We call this kind of serious limited-angle problem the ultra-limited-angle problem, which is difficult to effectively alleviate by traditional iterative reconstruction algorithms. With the development of deep learning, the generative adversarial network (GAN) performs well in image inpainting tasks and can add effective image information to restore missing parts of an image. In this study, given the characteristic of GAN to generate missing information, the sinogram-inpainting-GAN (SI-GAN) is proposed to restore missing sinogram data to suppress the singularity of the truncated sinogram for ultra-limited-angle reconstruction. We propose the U-Net generator and patch-design discriminator in SI-GAN to make the network suitable for standard medical CT images. Furthermore, we propose a joint projection domain and image domain loss function, in which the weighted image domain loss can be added by the back-projection operation. Then, by inputting a paired limited-angle/180° sinogram into the network for training, we can obtain the trained model, which has extracted the continuity feature of sinogram data. Finally, the classic CT reconstruction method is used to reconstruct the images after obtaining the estimated sinograms. The simulation studies and actual data experiments indicate that the proposed method performed well to reduce the serious artifacts caused by ultra-limited-angle scanning.


2006 ◽  
Vol 2006 ◽  
pp. 1-8
Author(s):  
Ming Yan ◽  
Cishen Zhang ◽  
Hongzhu Liang

FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional) approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Luzhen Deng ◽  
Peng Feng ◽  
Mianyi Chen ◽  
Peng He ◽  
Biao Wei

Compressive Sensing (CS) theory has great potential for reconstructing Computed Tomography (CT) images from sparse-views projection data and Total Variation- (TV-) based CT reconstruction method is very popular. However, it does not directly incorporate prior images into the reconstruction. To improve the quality of reconstructed images, this paper proposed an improved TV minimization method using prior images and Split-Bregman method in CT reconstruction, which uses prior images to obtain valuable previous information and promote the subsequent imaging process. The images obtained asynchronously were registered via Locally Linear Embedding (LLE). To validate the method, two studies were performed. Numerical simulation using an abdomen phantom has been used to demonstrate that the proposed method enables accurate reconstruction of image objects under sparse projection data. A real dataset was used to further validate the method.


Author(s):  
Edward Angus ◽  
Yuntao An ◽  
Gary S. Schajer

X-ray computed tomography (CT) is a powerful tool for industrial inspection. However, the harsh conditions encountered in some production environments make accurate motion control difficult, leading to motion artifacts in CT applications. A technique is demonstrated that removes motion artifacts by using an iterative-solver CT reconstruction method that includes a bulk Radon transform shifting step to align radiographic data before reconstruction. The paper uses log scanning in a sawmill as an example application. We show how for a known nominal object density distribution (circular prismatic in the case of a log), the geometric center and radius of the log may be approximated from its radiographs and any motion compensated for. This may then be fed into a previously developed iterative reconstruction CT scheme based on a polar voxel geometry and useful for describing logs. The method is validated by taking the known density distribution of a physical phantom and producing synthetic radiographs in which the axis of object rotation does not coincide with the center of field of view for a hypothetical scanner geometry. Reconstructions could then be made on radiographs that had been corrected and compared to those that had not. This was done for progressively larger offsets between these two axes and the reduction in voxel density vector error studied. For CT applications in industrial settings in which precise motion control is impractical or too costly, radiographic data shifting and scaling based on predictive models for the Radon transform appears to be a simple but effective technique.


Sign in / Sign up

Export Citation Format

Share Document