The influence of a magnet field on sulfur removal from liquid iron by hydrogen plasma arc melting

Author(s):  
Yujia Zhang ◽  
Yang Kong ◽  
Xiliang Guo ◽  
Jiang Wang ◽  
Zhongming Ren ◽  
...  

In this work, the static magnetic field was applied to plasma arc melting (PAM) method. The influence on sulfur removal from iron by Ar-20%H2 (PAM) was investigated experimentally. The results show that, sulfur content decreases more noticeably with the magnet field. The mechanism of sulfur removal by hydrogen plasma arc melting (HPAM) was found to obey a first-order rate law. From kinetic analysis, the adoption of magnet field enhanced purification efficiency about 45% under the same conditions. The numerical simulations were necessarily carried out to investigate the fluid flows of the melt. The results show that the magnet field changes the flow regime and strengthens the flow velocity of the melt. Moreover, the dead zone in melt by typical HPAM was eliminated. It is reasonable that dissolved sulfur atoms transferring to the top interface to react with active hydrogen atoms was promoted. In addition, during solidification process, thermoelectric magnetic (TEM) flows promote solute atoms that discharged from the solid–liquid interface moving to the upside of specimen. As a consequence, iron with much lower sulfur content could be obtained at the bottom of specimens, and sulfur removal was enhanced further during solidification under a static magnetic field.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Xiliang Guo ◽  
Jianbo Yu ◽  
Yuan Hou ◽  
Yujia Zhang ◽  
Jiang Wang ◽  
...  

In this work, the removal of manganese from nickel melts by Ar and (10%, 20% and 40%) H2 plasma arc melting under various pressures (0.01–0.02, 0.04–0.05 and 0.09–0.1 MPa) was investigated experimentally. The results show that only a slight reduction in the manganese content is obtained by Ar plasma arc melting (PAM). By contrast, the manganese content of liquid nickel decreases noticeably upon the addition of hydrogen to plasma gas, and the rate of manganese removal increases with increasing hydrogen volume fraction. In addition, the reduction in the pressure enhances the efficiency of manganese removal from liquid nickel by hydrogen plasma arc melting (HPAM). The process of manganese removal by HPAM was found to obey a first-order rate law. From kinetic analysis, the rate of reduction in the manganese content increases proportionally to the 0.73–0.75th power of the hydrogen volume fraction in the plasma gas. However, the rate of the manganese content reduction increases proportionally to approximately 0.88th power of %H2 in the plasma gas for the initial manganese content of 0.89 mass%, which is slightly higher than that for the initial manganese concentration of 0.45 mass%. Thermodynamic analysis indicates that the volatilization of manganese benefits from negative pressure and the presence of active hydrogen atoms that act as the transfer media of the metal vapor in the gas boundary layer.


2006 ◽  
Vol 60 (21-22) ◽  
pp. 2604-2605 ◽  
Author(s):  
Joon Woo Bae ◽  
Jae-Won Lim ◽  
Kouji Mimura ◽  
Minoru Isshiki

2015 ◽  
Vol 40 (25) ◽  
pp. 7943-7948 ◽  
Author(s):  
Guoling Li ◽  
Li Li ◽  
Chao Yang ◽  
Wenhuai Tian ◽  
Xingguo Li

2010 ◽  
Vol 297-301 ◽  
pp. 97-104 ◽  
Author(s):  
Farid Mechighel ◽  
Bernard Pateyron ◽  
Mahfoud Kadja ◽  
Mohammed El Ganaoui ◽  
S. Dost

A numerical simulation study has been carried out to examine the effect of a static magnetic field on the solidification process of an alloy. A mathematical model, based on the continuum model, was developed for the computation of a transient double-diffusive fluid flow under Lorentz body force. The model includes conservation of mass and momentum, heat, species and electrical charge balance equations. The simulation domain was selected as a cavity filled with a metallic alloy and differentially heated, which may be taken as a Bridgman model domain used in the crystal growth process. The solution is carried out by using a Finite Volume Method. Study of the direction and the intensity of the applied magnetic field effects on stabilizing the double diffusive flow field were also carried out. Simulation results indicate that the use of a static, magnetic field in this growth setup is effective in suppressing natural convection in the solution.


2011 ◽  
Vol 52 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Kouji Mimura ◽  
Keigo Matsumoto ◽  
Minoru Isshiki

Sign in / Sign up

Export Citation Format

Share Document