Class Highlight Generative Adversarial Networks for Strip Steel Defect Classification

Author(s):  
Jiang Chang ◽  
Shengqi Guan

In order to solve the problem of dataset expansion in deep learning tasks such as image classification, this paper proposed an image generation model called Class Highlight Generative Adversarial Networks (CH-GANs). In order to highlight image categories, accelerate the convergence speed of the model and generate true-to-life images with clear categories, first, the image category labels were deconvoluted and integrated into the generator through [Formula: see text] convolution. Second, a novel discriminator that cannot only judge the authenticity of the image but also the image category was designed. Finally, in order to quickly and accurately classify strip steel defects, the lightweight image classification network GhostNet was appropriately improved by modifying the number of network layers and the number of network channels, adding SE modules, etc., and was trained on the dataset expanded by CH-GAN. In the comparative experiments, the average FID of CH-GAN is 7.59; the accuracy of the improved GhostNet is 95.67% with 0.19[Formula: see text]M parameters. The experimental results prove the effectiveness and superiority of the methods proposed in this paper in the generation and classification of strip steel defect images.

2021 ◽  
Vol 13 (21) ◽  
pp. 4284
Author(s):  
Xue Rui ◽  
Yang Cao ◽  
Xin Yuan ◽  
Yu Kang ◽  
Weiguo Song

Rapid progress on disaster detection and assessment has been achieved with the development of deep-learning techniques and the wide applications of remote sensing images. However, it is still a great challenge to train an accurate and robust disaster detection network due to the class imbalance of existing data sets and the lack of training data. This paper aims at synthesizing disaster remote sensing images with multiple disaster types and different building damage with generative adversarial networks (GANs), making up for the shortcomings of the existing data sets. However, existing models are inefficient in multi-disaster image translation due to the diversity of disaster and inevitably change building-irrelevant regions caused by directly operating on the whole image. Thus, we propose two models: disaster translation GAN can generate disaster images for multiple disaster types using only a single model, which uses an attribute to represent disaster types and a reconstruction process to further ensure the effect of the generator; damaged building generation GAN is a mask-guided image generation model, which can only alter the attribute-specific region while keeping the attribute-irrelevant region unchanged. Qualitative and quantitative experiments demonstrate the validity of the proposed methods. Further experimental results on the damaged building assessment model show the effectiveness of the proposed models and the superiority compared with other data augmentation methods.


2021 ◽  
Vol 11 (15) ◽  
pp. 7034
Author(s):  
Hee-Deok Yang

Artificial intelligence technologies and vision systems are used in various devices, such as automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, outdoor vision systems have been applied across numerous fields of analysis. Despite their widespread use, current systems work well under good weather conditions. They cannot account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and remove noise because of rain, snow, and mist to boost the performance of the algorithms employed in image processing. Several studies have targeted the removal of noise resulting from inclement conditions. We focused on eliminating the effects of raindrops on images captured with outdoor vision systems in which the camera was exposed to rain. An attentive generative adversarial network (ATTGAN) was used to remove raindrops from the images. This network was composed of two parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an attention map to detect rain droplets. A de-rained image was generated by increasing the number of attentive-recurrent network layers. We increased the number of visual attentive-recurrent network layers in order to prevent gradient sparsity so that the entire generation was more stable against the network without preventing the network from converging. The experimental results confirmed that the extended ATTGAN could effectively remove various types of raindrops from images.


2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiasong Wu ◽  
Xiang Qiu ◽  
Jing Zhang ◽  
Fuzhi Wu ◽  
Youyong Kong ◽  
...  

Generative adversarial networks and variational autoencoders (VAEs) provide impressive image generation from Gaussian white noise, but both are difficult to train, since they need a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously, which can easily lead to unstable training. To solve or alleviate these synchronous training problems of generative adversarial networks (GANs) and VAEs, researchers recently proposed generative scattering networks (GSNs), which use wavelet scattering networks (ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs is that the parameters of ScatNets do not need to be learned, while the disadvantage of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than that of CNNs. In addition, the dimensionality reduction method of principal component analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore, affect the quality of generated images in the testing process. To further improve the quality of generated images while keeping the advantages of GSNs, this study proposes generative fractional scattering networks (GFRSNs), which use more expressive fractional wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder to generate an image. Additionally, this study develops a new dimensionality reduction method named feature-map fusion (FMF) instead of performing PCA to better retain the information of FrScatNets,; it also discusses the effect of image fusion on the quality of the generated image. The experimental results obtained on the CIFAR-10 and CelebA datasets show that the proposed GFRSNs can lead to better generated images than the original GSNs on testing datasets. The experimental results of the proposed GFRSNs with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are also given.


Sign in / Sign up

Export Citation Format

Share Document