A 12-BIT 400-MS/s CURRENT-STEERING DAC WITH DEGLITCHING TECHNIQUE

2014 ◽  
Vol 23 (01) ◽  
pp. 1450004 ◽  
Author(s):  
XIAOBO XUE ◽  
XIAOLEI ZHU ◽  
QIFENG SHI ◽  
LENIAN HE

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) employing a deglitching technique is proposed. The deglitching technique is realized by lowering the voltage swing of the control signal as well as by using a method of glitch counteraction (GC). A new switch–driver structure is designed to enable the effectiveness of the GC and provide sufficient driving capability under a low supply voltage. Moreover, the control signal's rise/fall asymmetry which increases the glitch error can be suppressed by using the proposed switch–driver structure. The 12-bit DAC is implemented in 180 nm CMOS technology. The measurement results show that the spurious free dynamic range (SFDR) at low signal frequency is 78.8 dB, and it is higher than 70 dB up to 60 MHz signal frequency at 400 MS/s. The measured INL and DNL are both less than ±0.6 LSB.

2014 ◽  
Vol 23 (04) ◽  
pp. 1450053 ◽  
Author(s):  
FAN XIA ◽  
YIQIANG ZHAO ◽  
GONGYUAN ZHAO

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) with high static and dynamic linearity is proposed. Compared to traditional intrinsic-accuracy DACs, the static linearity is obtained by a series of subsidiary DACs which can shorten the calibration cycle with smaller additional circuits. The presented DAC is based on the segmented architecture and layout has been carefully designed so that better synchronization among the current sources can be achieved. The DAC is implemented in a standard 0.18-μm CMOS technology and the current source block occupies less than 0.5 mm2. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) performance is ± 0.3 LSB and ± 0.5 LSB, respectively, and the spurious free dynamic range (SFDR) is 75 dB at 1 MHz signal frequency and 200 MHz sampling frequency.


Author(s):  
Jayeshkumar J. Patel ◽  
Amisha P. Naik

A compact current-mode Digital-to-Analog converter (DAC) suitable for biomedical application is repesented in this paper .The designed DAC is binary weighted in 180nm CMOS technology with 1.8V supply voltage. In this implementation, authors have focused on calculaton of Non linearity error say INL and DNL for 4 bit DAC having various type of switches: NMOS, PMOS and Transmission Gate. The implemented DAC uses lower area and power compared to unary architecture due to absence of digital decoders. The desired value of Integrated non linearity (INL) and Differential non linearity (DNL) for DAC for are within a range of +0.5LSB. Result obtained in this works for INL and DNL for the case DAC using Transmission Gate is +0.34LSB and +0.38 LSB respectively with 22mW power dissipation.


2014 ◽  
Vol 513-517 ◽  
pp. 4555-4558
Author(s):  
Weng Yuan Li ◽  
Teng Xiao Jiang

In order to satisfy the higher and higher transmission rate and broadband requirement of modern communication, a 4-bit 5 GS/s digital-to-analog converter (DAC) integrated circuit is presented. The DAC circuit is based on current steering architecture and segmented with a 4 bit unary. The circuit is designed and analyzed in TSMC 0.18 μm CMOS technology. The chip size is 0.675 mm 0.525 mm. Simulation results show that the maximum integral nonlinearity (INL) is 0.15 LSB. The DAC can achieve a spurious-free dynamic range (SFDR) of 22.76 dB under a clock frequency of 5 GHz with an input signal frequency of 250 MHz, while the power consumption is 11.6 mW.


2018 ◽  
Vol 27 (09) ◽  
pp. 1850142 ◽  
Author(s):  
Mehdi Bandali ◽  
Omid Hashemipour

A two-dimensional digital-to-analog converter (DAC) structure compatible with dynamic element matching (DEM) methods is presented. Unlike the DACs using segmented structure for employing DEM, the new structure randomizes inter-segment error. This advantage is achieved because of the characteristics of the algorithm of two-dimensional decoding. The simulation results in 180[Formula: see text]nm CMOS technology, 319.72[Formula: see text]MHz signal frequency and 800[Formula: see text]MS/s sample rate for an 8-bit two-dimensional DAC utilizing the presented structure, shows 14.94[Formula: see text]dB spurious-free dynamic range (SFDR) improvement compared to the SFDR of the same DAC without employing the presented structure. Also, the IMD3 of the DAC employing the presented structure for [Formula: see text][Formula: see text]MHz and [Formula: see text][Formula: see text]MHz is 50.1[Formula: see text]dB.


2012 ◽  
Vol 10 ◽  
pp. 201-206
Author(s):  
G. Bertotti ◽  
A. Laifi ◽  
E. Di Gioia ◽  
M. Masoumi ◽  
N. Dodel ◽  
...  

Abstract. An 8 bit segmented current steering DAC is presented for the compensation of mismatch of sensors with current output arranged in a large arrays. The DAC is implemented in a 1.8 V supply voltage 180 nm standard CMOS technology. Post layout simulations reveal that the design target concerning a sampling frequency of 2.6 MHz is exceeded, worst-case settling time equals 60.6 ns. The output current range is 0–10 μA, which translates into an LSB of 40 nA. Good linearity is achieved, INL < 0.5 LSB and DNL < 0.4 LSB, respectively. Static power consumption with the outputs operated at a voltage of 0.9 V is approximately 10 μW. Dynamic power, mainly consumed by switching activity of the digital circuit parts, amounts to 100 μW at 2.6 MHz operation frequency. Total area is 38.6 × 2933.0 μm2.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


Author(s):  
Jetsdaporn Satansup ◽  
Worapong Tangsrirat

A circuit technique for designing a compact low-voltage current-mode multiplier/divider circuit in CMOS technology is presented.  It is based on the use of a compact current quadratic cell able to operate at low supply voltage.  The proposed circuit is designed and simulated for implementing in TSMC 0.25-m CMOS technology with a single supply voltage of 1.5 V.  Simulation results using PSPICE, accurately agreement with theoretical ones, have been provided, and also demonstrate a maximum linearity error of 1.5%, a THD less than 2% at 100 MHz, a total power consumption of 508 W, and -3dB small-signal frequency of about 245 MHz.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950172
Author(s):  
Mehdi Bandali ◽  
Alireza Hassanzadeh ◽  
Masoume Ghashghaie ◽  
Omid Hashemipour

In this paper, an 8-bit ultra-low-power, low-voltage current steering digital-to-analog converter (DAC) is presented. The proposed DAC employs a new segmented structure that results in low integral nonlinearity (INL) and high spurious-free dynamic range (SFDR). Moreover, this DAC utilizes a low-voltage current cell. The low-voltage characteristic of the current cell is achieved by connecting the body of MOSFET switches to their sources. Utilizing a low supply voltage along with a low bias current in the current cells results in about 623.81-[Formula: see text]W power consumption in 140-MS/s sample rate, which is very small compared to previous reports. The post-layout simulation results in 180-nm CMOS technology and [Formula: see text]-V supply voltage with the sample rate of 140[Formula: see text]MS/s show SFDR [Formula: see text] 64.37[Formula: see text]dB in the Nyquist range. The differential nonlinearity (DNL) and INL of the presented DAC are 0.1254 LSB and 0.1491 LSB, respectively.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


2020 ◽  
Vol 8 (5) ◽  
pp. 4270-4274

A multi-phasic neural stimulator using current steering Digital to Analog Converter with low resolution is in great demand to ameliorate symptoms of Parkinson's disease and disorders of consciousness. This article presents 5-bit segmented DAC designed for such applications. In order to simulate the design, cadence virtuoso tool with 180 nm MOS technology is used. The results obtained after simulation indicate that the proposed DAC offers +0.34 LSB INL and +0.36 LSB value for DNL. For the input of 200 MSPS, the power dissipation is about 22 mW when working with 1.8 V of supply voltage.


Sign in / Sign up

Export Citation Format

Share Document