Design of Artificial Neuron Network with Synapse Utilizing Hybrid CMOS Transistors with Memristor for Low Power Applications

2020 ◽  
Vol 29 (12) ◽  
pp. 2050187
Author(s):  
V. Keerthy Rai ◽  
R. Sakthivel

Neural networks are mimetic with biological neuron which are employed on digital computers. These networks are designed with CMOS technology using 0.45[Formula: see text][Formula: see text]m in cadence virtuoso. The scaling of CMOS limits parameters like power consumption, area and parallelism. To overcome the limitations, a nanoscale, nonvolatile Memristor device is used to design the synapses. The proposed network is designed for neuron synapse networks implemented with a memristor device. This network is compared with neuron linked with CMOS synapse. The proposed network has low power consumption, high spike frequency, and low delay value. The spike frequency of Memristor synapse increases by 65.51% when compared with the existing CMOS synapse and power consumption is reduced to 52.79%. The delay is reduced to 0.294[Formula: see text][Formula: see text]s. The simulation results are carried using Specter.

2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


2014 ◽  
Vol 67 (1) ◽  
Author(s):  
Wong How Hwan ◽  
Vinny Lam Siu Fan ◽  
Yusmeeraz Yusof

The purpose of this research is to design a low power integrated complementary metal oxide semiconductor (CMOS) detection circuit for charge-modulated field-effect transistor (CMFET) and it is used for the detection of deoxyribonucleic acid (DNA) hybridization. With the available CMOS technology, it allows the realization of complete systems which integrate the sensing units and transducing elements in the same device. Point-of-care (POC) testing device is a device that allows anyone to operate anywhere and obtain immediate results. One of the important features of POC device is low power consumption because it is normally battery-operated. The power consumption of the proposed integrated CMOS detection circuit requires only 14.87 mW. The detection circuit will amplify the electrical signal that comes from the CMFET to a specified level in order to improve the recording characteristics of the biosensor. Self-cascode topology was used in the drain follower circuit in order to reduce the channel length modulation effect. The proposed detection circuit was designed with 0.18µm Silterra CMOS fabrication process and simulated under Cadence Simulation Tool. 


2014 ◽  
Vol 23 (02) ◽  
pp. 1450023
Author(s):  
MOHAMED O. SHAKER ◽  
MAGDY A. BAYOUMI

A novel low power clock gated successive approximation register (SAR) is proposed. The new register is based on gating the clock signal when there is no data switching activity. It operates with fewer transistors and no redundant transitions which makes it suitable for low power applications. The proposed register consisting of 8 bits has been designed up to the layout level with 1 V power supply in 90 nm CMOS technology and has been simulated using SPECTRE. Simulation results have shown that the proposed register saves up to 75% of power consumption.


2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nandini Vitee ◽  
Harikrishnan Ramiah ◽  
Wei-Keat Chong ◽  
Gim-Heng Tan ◽  
Jeevan Kanesan ◽  
...  

A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are −13.6 dBm and −4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.


2013 ◽  
Vol 411-414 ◽  
pp. 125-130
Author(s):  
Yan Bo Niu ◽  
An Ping Jiang

SM4 is a 128-bit block cipher used in SOC and smart cards to ensure the safety of data transmission. In order to realize a low power implementation of the SM4 cipher block, some S-boxes were evaluated firstly and we proposed a new architecture of SM4 S-box called MUX S-box with a power consumption of 13.92W@10Mhz on SMIC 0.18m technology, Meanwhile, the implementation of SM4 cipher round based on the SM4 MUX S-box was completed and a low power consumption of 0.33mW @ 10 MHz on 0.18 m CMOS technology is achieved.


2016 ◽  
Vol 833 ◽  
pp. 111-118 ◽  
Author(s):  
Hasrul Nisham bin Rosly ◽  
Mamun bin Ibne Reaz ◽  
Noorfazila Kamal ◽  
Fazida Hanim Hashim

Chip manufacturing technologies have been a key to the growth in all electronics devices over the past decade, bringing added convenience and accessibility through advantages in cost, size, and power consumption. Using recent CMOS technology, LFSR is implemented until layout level which develops low power application. One of the most frequent uses of a LFSR inside a FPGA is as a counter. Using a LFSR instead of a binary counter can increase the clock rate considerably due to the low routing resource required to produce the next state logic. This paper explores the LFSR using different architecture in a 0.18μm CMOS technology. There are 3 type architecture implemented into LFSR which is NAND gates, pass transistor and transmission gates. Those LFSR are compare in term of CMOS layout, hardware implementation and power consumption using Mentor Graphics tools. Thus, it provides analysis of LFSR for low power application in CMOS VLSI.


2020 ◽  
Vol 6 (18) ◽  
pp. eaaz6511 ◽  
Author(s):  
Gongjin Li ◽  
Zhe Ma ◽  
Chunyu You ◽  
Gaoshan Huang ◽  
Enming Song ◽  
...  

The sensing module that converts physical or chemical stimuli into electrical signals is the core of future smart electronics in the post-Moore era. Challenges lie in the realization and integration of different detecting functions on a single chip. We propose a new design of on-chip construction for low-power consumption sensor, which is based on the optoelectronic detection mechanism with external stimuli and compatible with CMOS technology. A combination of flipped silicon nanomembrane phototransistors and stimuli-responsive materials presents low-power consumption (CMOS level) and demonstrates great functional expansibility of sensing targets, e.g., hydrogen concentration and relative humidity. With a device-first, wafer-compatible process introduced for large-scale silicon flexible electronics, our work shows great potential in the development of flexible and integrated smart sensing systems for the realization of Internet of Things applications.


Sign in / Sign up

Export Citation Format

Share Document