Controlling Hidden Dynamics and Multistability of a Class of Two-Dimensional Maps via Linear Augmentation

2021 ◽  
Vol 31 (03) ◽  
pp. 2150047
Author(s):  
Liping Zhang ◽  
Haibo Jiang ◽  
Yang Liu ◽  
Zhouchao Wei ◽  
Qinsheng Bi

This paper reports the complex dynamics of a class of two-dimensional maps containing hidden attractors via linear augmentation. Firstly, the method of linear augmentation for continuous dynamical systems is generalized to discrete dynamical systems. Then three cases of a class of two-dimensional maps that exhibit hidden dynamics, the maps with no fixed point and the maps with one stable fixed point, are studied. Our numerical simulations show the effectiveness of the linear augmentation method. As the coupling strength of the controller increases or decreases, hidden attractor can be annihilated or altered to be self-excited, and multistability of the map can be controlled to being bistable or monostable.

2021 ◽  
Author(s):  
Li-Ping Zhang ◽  
Yang Liu ◽  
Zhou-Chao Wei ◽  
Hai-Bo Jiang ◽  
Qin-Sheng Bi

Abstract This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden attractors. The mathematical model of these maps is firstly formulated by introducing a rational term. The analysis of existence and stabilities of the fixed points in these maps suggests that there are four types of fixed points, i.e., no fixed point, one single fixed point, two fixed points and a line of fixed points. To investigate the complex dynamics of these rational maps with different types of fixed points, numerical analysis tools, such as time histories, phase portraits, basins of attraction, Lyapunov exponent spectrum, Lyapunov (Kaplan-Yorke) dimension and bifurcation diagrams, are employed. Our extensive numerical simulations identify both self-excited and hidden attractors, which were rarely reported in the literature. Therefore, the multi-stability of these maps, especially the hidden one, is further explored in the present work.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 616
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Research using chaos theory allows for a better understanding of many phenomena modeled by means of dynamical systems. The appearance of chaos in a given process can lead to very negative effects, e.g., in the construction of bridges or in systems based on chemical reactors. This problem is important, especially when in a given dynamic process there are so-called hidden attractors. In the scientific literature, we can find many works that deal with this issue from both the theoretical and practical points of view. The vast majority of these works concern multidimensional continuous systems. Our work shows these attractors in discrete systems. They can occur in Newton’s recursion and in numerical integration.


1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.


1987 ◽  
Vol 01 (05n06) ◽  
pp. 239-244
Author(s):  
SERGE GALAM

A new mechanism to explain the first order ferroelastic—ferroelectric transition in Terbium Molybdate (TMO) is presented. From group theory analysis it is shown that in the two-dimensional parameter space ordering along either an axis or a diagonal is forbidden. These symmetry-imposed singularities are found to make the unique stable fixed point not accessible for TMO. A continuous transition even if allowed within Landau theory is thus impossible once fluctuations are included. The TMO transition is therefore always first order. This explanation is supported by experimental results.


2018 ◽  
Vol 28 (04) ◽  
pp. 1830011
Author(s):  
Mio Kobayashi ◽  
Tetsuya Yoshinaga

A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This study analyzes the bifurcation structure corresponding to the fixed and periodic points of a coupled system comprising two Gaussian maps. The bifurcation structure of a mutually coupled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became unstable through the bifurcation, the points were able to recover their stability while the system parameters were changing. Moreover, we investigated a parameter region in which symmetric and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated by the [Formula: see text]-type branching of a symmetric stable fixed point. The stability of the unstable fixed point could be recovered through period-doubling and tangent bifurcations. Furthermore, a homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves caused by two-periodic points was observed. The mutually coupled Gaussian map was merely a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic property associated with high-dimensional dynamical systems, was observed. The bifurcation structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by comparing the bifurcation structures of the Gaussian and logistic maps.


2013 ◽  
Vol 23 (01) ◽  
pp. 1330002 ◽  
Author(s):  
G. A. LEONOV ◽  
N. V. KUZNETSOV

From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which were devoted to constructing nested limit cycles in quadratic systems, that showed the necessity of studying hidden oscillations for solving this problem. Later, the problem of analyzing hidden oscillations arose from engineering problems in automatic control. In the 50–60s of the last century, the investigations of widely known Markus–Yamabe's, Aizerman's, and Kalman's conjectures on absolute stability have led to the finding of hidden oscillations in automatic control systems with a unique stable stationary point. In 1961, Gubar revealed a gap in Kapranov's work on phase locked-loops (PLL) and showed the possibility of the existence of hidden oscillations in PLL. At the end of the last century, the difficulties in analyzing hidden oscillations arose in simulations of drilling systems and aircraft's control systems (anti-windup) which caused crashes. Further investigations on hidden oscillations were greatly encouraged by the present authors' discovery, in 2010 (for the first time), of chaotic hidden attractor in Chua's circuit. This survey is dedicated to efficient analytical–numerical methods for the study of hidden oscillations. Here, an attempt is made to reflect the current trends in the synthesis of analytical and numerical methods.


2009 ◽  
Vol 19 (02) ◽  
pp. 745-753 ◽  
Author(s):  
M. A. DAHLEM ◽  
G. HILLER ◽  
A. PANCHUK ◽  
E. SCHÖLL

We study the nonlinear dynamics of two delay-coupled neural systems each modeled by excitable dynamics of FitzHugh–Nagumo type and demonstrate that bistability between the stable fixed point and limit cycle oscillations occurs for sufficiently large delay times τ and coupling strength C. As the mechanism for these delay-induced oscillations, we identify a saddle-node bifurcation of limit cycles.


1983 ◽  
Vol 90 ◽  
pp. 1-55 ◽  
Author(s):  
Atsuro Sannami

One of the basic problems in the theory of dynamical systems is the characterization of stable systems.Let M be a closed (i.e. compact without boundary) connected smooth manifold with a smooth Riemannian metric and Diffr (M) (r ≥ 1) denote the space of Cr diffeomorphisms on M with the uniform Cr topology.


2008 ◽  
Vol 18 (06) ◽  
pp. 1749-1758 ◽  
Author(s):  
WEN-WEN TUNG ◽  
JING HU ◽  
JIANBO GAO ◽  
VINCENT A. BILLOCK

Multistability is an interesting phenomenon of nonlinear dynamical systems. To gain insights into the effects of noise on multistability, we consider the parameter region of the Lorenz equations that admits two stable fixed point attractors, two unstable periodic solutions, and a metastable chaotic "attractor". Depending on the values of the parameters, we observe and characterize three interesting dynamical behaviors: (i) noise induces oscillatory motions with a well-defined period, a phenomenon similar to stochastic resonance but without a weak periodic forcing; (ii) noise annihilates the two stable fixed point solutions, leaving the originally transient metastable chaos the only observable; and (iii) noise induces hopping between one of the fixed point solutions and the metastable chaos, a three-state intermittency phenomenon.


Sign in / Sign up

Export Citation Format

Share Document