Euclidean gravity and holography

Author(s):  
Daniel Harlow ◽  
Edgar Shaghoulian

We discuss a recent proposal that the Euclidean gravity approach to quantum gravity is correct if and only if the theory is holographic, providing several examples and general arguments to support the conjecture. This provides a natural mechanism for the low-energy gravitational effective field theory to access a host of deep ultraviolet properties, like the Bekenstein–Hawking entropy of black holes, the unitarity of black hole evaporation, and the lack of exact global symmetries.

2004 ◽  
Vol 19 (30) ◽  
pp. 2299-2315 ◽  
Author(s):  
ALFREDO HERRERA-AGUILAR

We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of general relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low-energy string theory the double Ernst system can in particular be interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb–Ramond fields. We clarify the rotating character of the Btφ-component of the antisymmetric tensor field of Kalb–Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low-energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4-D effective field theory of the heterotic string. This transformation generates the U (1)n vector field content of the whole low-energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb–Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lam Hui ◽  
Alessandro Podo ◽  
Luca Santoni ◽  
Enrico Trincherini

Abstract We develop the effective theory for perturbations around black holes with scalar hair, in two directions. First, we show that the scalar-Gauss-Bonnet theory, often used as an example exhibiting scalar black hole hair, can be deformed by galileon operators leading to order unity changes to its predictions. The effective theory for perturbations thus provides an efficient framework for describing and constraining broad classes of scalar-tensor theories, of which the addition of galileon operators is an example. Second, we extend the effective theory to perturbations around an axisymmetric, slowly rotating black hole, at linear order in the black hole spin. We also discuss the inclusion of parity-breaking operators in the effective theory.


2018 ◽  
Vol 33 (36) ◽  
pp. 1850219
Author(s):  
Biplab Paik

In this paper, we propose a UV complete, quantum improved picture of a black hole geometry that conforms to the IR gravity of effective field theory. Our work builds on identifying an effective space-distributed notion of black hole fluid in quantum improved regular Einstein gravity and its theoretical correspondence with a cosmology inspired power law fluctuation of matter. Hence, we make use of phenomenological asymptotic scales of matter fluctuation in static space to consequently derive a UV complete line-element of black hole space–time. In this appraisal, it gets explicit how principle of causality is preserved even while there is an effective spread of black hole fluid across horizon(s). Gravity changes from its conventional classical geometry-state to a quantum masked profile across a hypersurface of characteristic radius [Formula: see text]. We make analyses that probe the newly proposed quantum improved gravity in the contexts of regularity of Einstein fields, complete predictability of Hawking radiation process, and first law of black hole thermodynamics. It emerges that quantum black hole geometry self-regulates a regular timelike core that is abide by every quantum theoretical constraint while being flat around its center.


1999 ◽  
Vol 82 (25) ◽  
pp. 4971-4974 ◽  
Author(s):  
Andrew G. Cohen ◽  
David B. Kaplan ◽  
Ann E. Nelson

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


2014 ◽  
pp. 200-236
Author(s):  
John F. Donoghue ◽  
Eugene Golowich ◽  
Barry R. Holstein

2018 ◽  
Vol 175 ◽  
pp. 08011 ◽  
Author(s):  
Ed Bennett ◽  
Deog Ki Hong ◽  
Jong-Wan Lee ◽  
C.-J. David Lin ◽  
Biagio Lucini ◽  
...  

As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing.


2016 ◽  
Vol 25 (05) ◽  
pp. 1641007 ◽  
Author(s):  
Manuel Pavón Valderrama

Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.


Sign in / Sign up

Export Citation Format

Share Document