scholarly journals ENDPOINT OF rp PROCESS USING RELATIVISTIC MEAN FIELD APPROACH AND A NEW MASS FORMULA

2012 ◽  
Vol 21 (08) ◽  
pp. 1250074 ◽  
Author(s):  
CHIRASHREE LAHIRI ◽  
G. GANGOPADHYAY

Densities from relativistic mean field calculations are applied to construct the optical potential and, hence calculate the endpoint of the rapid proton capture (rp) process. Mass values are taken from a new phenomenological mass formula. Endpoints are calculated for different temperature-density profiles of various X-ray bursters. We find that the rp process can produce significant quantities of nuclei upto around mass 95. Our results differ from existing works to some extent.

2013 ◽  
Vol 28 (17) ◽  
pp. 1350076 ◽  
Author(s):  
CHIRASHREE LAHIRI ◽  
G. GANGOPADHYAY

The importance of measuring Q-values in rapid proton capture process has been investigated. The microscopic optical model, derived using a nucleon–nucleon interaction and densities from relativistic mean field (RMF) calculations, has been utilized to calculate the reaction rates. It has been observed that the Q-values involved in the reactions at waiting points at A = 60 and 64 are very important in determining the final abundance of the process. Some other Q-values also play a crucial role in the final abundance of nuclei near the end point of the process.


2002 ◽  
Vol 11 (01) ◽  
pp. 55-65 ◽  
Author(s):  
CHUN-YUAN GAO ◽  
QI-REN ZHANG

The binding energies per-nucleon for 1654 nuclei, whose mass numbers range from 16 to 263 and charge numbers range from 8 to 106, are calculated by the relativistic mean field theory, with finite nucleon size effect being taken into account. The calculated energy surface goes through the middle of experimental points, and the root mean square deviation for the binding energies per-nucleon is 0.08163 MeV. The numerical results may be well simulated by a droplet model type mass formula. The droplet model is therefore put on the relativistic mean field theoretical foundations.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Z.-X. Liu ◽  
C.-J. Xia ◽  
W.-L. Lu ◽  
Y.-X. Li ◽  
J. N. Hu ◽  
...  

2017 ◽  
Vol 26 (11) ◽  
pp. 1750072 ◽  
Author(s):  
G. Saxena ◽  
M. Kumawat ◽  
M. Kaushik ◽  
U. K. Singh ◽  
S. K. Jain ◽  
...  

We employ the relativistic mean-field plus BCS (RMF+BCS) approach to study the behavior of [Formula: see text]-shell by investigating in detail the single particle energies, and proton and neutron density profiles along with the deformations and radii of even–even nuclei. Emergence of new shell closure, weakly bound structure and most recent phenomenon of bubble structure are reported in the [Formula: see text]-shell. [Formula: see text]C, [Formula: see text]O and [Formula: see text]S are found to have a weakly bound structure due to particle occupancy in 2[Formula: see text] state. On the other hand [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si are found with depleted central density due to the unoccupied 2[Formula: see text] state and hence they are the potential candidates of bubble structure. [Formula: see text]C and [Formula: see text]O emerge as doubly magic with [Formula: see text] in accord with the recent experiments and [Formula: see text]S emerges as a new proton magic nucleus with [Formula: see text]. [Formula: see text] and [Formula: see text] are predicted as magic numbers in doubly magic [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si, respectively. These results are found in agreement with the recent experiments and have consistent with the other parameters of RMF and other theories.


1998 ◽  
Vol 57 (2) ◽  
pp. 857-865 ◽  
Author(s):  
A. Delfino ◽  
Lizardo H. C. M. Nunes ◽  
J. S. Sá Martins

1999 ◽  
Vol 651 (2) ◽  
pp. 117-139 ◽  
Author(s):  
S.K. Patra ◽  
Cheng-Li Wu ◽  
C.R. Praharaj ◽  
Raj K. Gupta

Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


Sign in / Sign up

Export Citation Format

Share Document