scholarly journals CHAOTIC BEHAVIOR OF BHALEKAR–GEJJI DYNAMICAL SYSTEM UNDER ATANGANA–BALEANU FRACTAL FRACTIONAL OPERATOR

Fractals ◽  
2021 ◽  
pp. 2240005
Author(s):  
SHABIR AHMAD ◽  
AMAN ULLAH ◽  
ALI AKGÜL ◽  
THABET ABDELJAWAD

In this paper, a new set of differential and integral operators has recently been proposed by Abdon et al. by merging the fractional derivative and the fractal derivative, taking into account nonlocality, memory and fractal effects. These operators have demonstrated the complex behavior of many physical, which generally does not predict in ordinary operators or sometimes in fractional operators also. In this paper, we investigate the proposed model by replacing the classic derivative by fractal–fractional derivatives in which fractional derivative is taken in Atangana–Baleanu Caputo sense to study the complex behavior due to nonlocality, memory and fractal effects. Through Schauder’s fixed point theorem, we establish existence theory to ensure that the model posseses at least one solution. Also, Banach fixed theorem guarantees the uniqueness of solution of the proposed model. By means of nonlinear functional analysis, we prove that the proposed model is Ulam–Hyers stable under the new fractal–fractional derivative. We establish the numerical results of the considered model through Lagrangian piece-wise interpolation. For the different values of fractional order and fractal dimension, we study the chaos behavior of the proposed model via simulation at 2D and 3D phase. We show the effect of fractal dimension on integer and fractional order through simulations.

Author(s):  
Parvaiz Ahmad Naik ◽  
Jian Zu ◽  
Mehraj-ud-din Naik

In this paper, we develop a three-dimensional fractional-order cancer model. The proposed model involves the interaction among tumor cells, healthy tissue cells and activated effector cells. The detailed analysis of the equilibrium points is studied. Also, the existence and uniqueness of the solution are investigated. The fractional derivative is considered in the Caputo sense. Numerical simulations are performed to illustrate the effectiveness of the obtained theoretical results. The outcome of the study reveals that the order of the fractional derivative has a significant effect on the dynamic process. Further, the calculated Lyapunov exponents give the existence of chaotic behavior of the proposed model. Also, it is observed from the obtained results that decrease in fractional-order [Formula: see text] increases the chaotic behavior of the model.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Choonkil Park ◽  
R. I. Nuruddeen ◽  
Khalid K. Ali ◽  
Lawal Muhammad ◽  
M. S. Osman ◽  
...  

Abstract This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muath Awadalla ◽  
Yves Yameni Noupoue Yannick ◽  
Kinda Abu Asbeh

This work is dedicated to the study of the relationship between altitude and barometric atmospheric pressure. There is a consistent literature on this relationship, out of which an ordinary differential equation with initial value problems is often used for modeling. Here, we proposed a new modeling technique of the relationship using Caputo and Caputo–Fabrizio fractional differential equations. First, the proposed model is proven well-defined through existence and uniqueness of its solution. Caputo–Fabrizio fractional derivative is the main tool used throughout the proof. Then, follow experimental study using real world dataset. The experiment has revealed that the Caputo fractional derivative is the most appropriate tool for fitting the model, since it has produced the smallest error rate of 1.74% corresponding to the fractional order of derivative α  = 1.005. Caputo–Fabrizio was the second best since it yielded an error rate value of 1.97% for a fractional order of derivative α  = 1.042, and finally the classical method produced an error rate of 4.36%.


2018 ◽  
Vol 11 (06) ◽  
pp. 1850077 ◽  
Author(s):  
Anwar Zeb ◽  
Vedat Suat Erturk ◽  
Umar Khan ◽  
Gul Zaman ◽  
Shaher Momani

In this paper, we develop a fractional-order smoking model by considering relapse class. First, we formulate the model and find the unique positive solution for the proposed model. Then we apply the Grünwald–Letnikov approximation in the place of maintaining a general quadrature formula approach to the Riemann–Liouville integral definition of the fractional derivative. Building on this foundation avoids the need for domain transformations, contour integration or involved theory to compute accurate approximate solutions of fractional-order giving up smoking model. A comparative study between Grünwald–Letnikov method and Runge–Kutta method is presented in the case of integer-order derivative. Finally, we present the obtained results graphically.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 871-877 ◽  
Author(s):  
Feng Gao ◽  
Xiao-Jun Yang

In this paper we propose a new model for the fractional Maxwell fluid within fractional Caputo-Fabrizio derivative operator. We present the fractional Maxwell fluid in the differential form for the first time. The analytical results for the proposed model with the fractional Losada-Nieto integral operator are given to illustrate the efficiency of the fractional order operators to the line viscoelasticity.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ndolane Sene

This paper is presented on the theory and applications of the fractional-order chaotic system described by the Caputo fractional derivative. Considering the new fractional model, it is important to establish the presence or absence of chaotic behaviors. The Lyapunov exponents in the fractional context will be our fundamental tool to arrive at our conclusions. The variations of the model’s parameters will generate chaotic behavior, in general, which will be established using the Lyapunov exponents and bifurcation diagrams. For the system’s phase portrait, we will present and apply an interesting fractional numerical discretization. For confirmation of the results provided in this paper, the circuit schematic is drawn and simulated. As it will be observed, the results obtained after the simulation of the numerical scheme and with the Multisim are in good agreement.


Author(s):  
Rizwan Rizwan ◽  
Akbar Zada ◽  
Hira Waheed ◽  
Usman Riaz

Abstract In this manuscript, switched coupled system of nonlinear impulsive Langevin equations involving four Hilfer fractional-order derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss the existence, uniqueness, and Ulam’s type stability results of our proposed model, with the help of Schaefer’s fixed point theorem. An example is provided at the end to illustrate our results.


2021 ◽  
Vol 6 (12) ◽  
pp. 13689-13725
Author(s):  
Sonal Jain ◽  
◽  
Youssef El-Khatib

<abstract><p>Differential operators based on convolution have been recognized as powerful mathematical operators able to depict and capture chaotic behaviors, especially those that are not able to be depicted using classical differential and integral operators. While these differential operators have being applied with great success in many fields of science, especially in the case of dynamical system, we have to confess that they were not able depict some chaotic behaviors, especially those with additionally similar patterns. To solve this issue new class of differential and integral operators were proposed and applied in few problems. In this paper, we aim to depict chaotic behavior using the newly defined differential and integral operators with fractional order and fractal dimension. Additionally we introduced a new chaotic operators with strange attractors. Several simulations have been conducted and illustrations of the results are provided to show the efficiency of the models.</p></abstract>


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 782
Author(s):  
Fangying Song ◽  
George Em Karniadakis

Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.


Sign in / Sign up

Export Citation Format

Share Document