scholarly journals COMPLETENESS OF BOND MARKET DRIVEN BY LÉVY PROCESS

2010 ◽  
Vol 13 (05) ◽  
pp. 635-656 ◽  
Author(s):  
MICHAŁ BARSKI ◽  
JERZY ZABCZYK

The completeness problem of the bond market model with the random factors determined by a Wiener process and Poisson random measure is studied. Hedging portfolios use bonds with maturities in a countable, dense subset of a finite time interval. It is shown that under natural assumptions the market is not complete unless the support of the Lévy measure consists of a finite number of points. Explicit constructions of contingent claims which cannot be replicated are provided.

2010 ◽  
Vol 2010 ◽  
pp. 1-27
Author(s):  
José E. Figueroa-López ◽  
Jin Ma

Motivated by the so-called shortfall risk minimization problem, we consider Merton's portfolio optimization problem in a non-Markovian market driven by a Lévy process, with a bounded state-dependent utility function. Following the usual dual variational approach, we show that the domain of the dual problem enjoys an explicit “parametrization,” built on a multiplicative optional decomposition for nonnegative supermartingales due to Föllmer and Kramkov (1997). As a key step we prove a closure property for integrals with respect to a fixed Poisson random measure, extending a result by Mémin (1980). In the case where either the Lévy measure ν of Z has finite number of atoms or ΔSt/St−=ζtϑ(ΔZt) for a process ζ and a deterministic function ϑ, we characterize explicitly the admissible trading strategies and show that the dual solution is a risk-neutral local martingale.


2021 ◽  
Vol 58 (1) ◽  
pp. 42-67 ◽  
Author(s):  
Mads Stehr ◽  
Anders Rønn-Nielsen

AbstractWe consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Andrzej Chydzinski ◽  
Blazej Adamczyk

We present an analysis of the number of losses, caused by the buffer overflows, in a finite-buffer queue with batch arrivals and autocorrelated interarrival times. Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown. In addition, several numerical examples are presented, including illustrations of the dependence of the number of losses on the average batch size, buffer size, system load, autocorrelation structure, and time.


2004 ◽  
Vol 41 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Zvetan G. Ignatov ◽  
Vladimir K. Kaishev

An explicit formula for the probability of nonruin of an insurance company in a finite time interval is derived, assuming Poisson claim arrivals, any continuous joint distribution of the claim amounts and any nonnegative, increasing real function representing its premium income. The formula is compact and expresses the nonruin probability in terms of Appell polynomials. An example, illustrating its numerical convenience, is also given in the case of inverted Dirichlet-distributed claims and a linearly increasing premium-income function.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Khalid Oufdil

Abstract In this paper, we study one-dimensional backward stochastic differential equations under logarithmic growth in the 𝑧-variable ( | z | ⁢ | ln ⁡ | z | | ) (\lvert z\rvert\sqrt{\lvert\ln\lvert z\rvert\rvert}) . We show the existence and the uniqueness of the solution when the noise is driven by a Brownian motion and an independent Poisson random measure. In addition, we highlight the connection of such BSDEs with stochastic optimal control problem, where we show the existence of an optimal strategy for the control problem.


2011 ◽  
Vol 34 (7) ◽  
pp. 841-849 ◽  
Author(s):  
Shuping He ◽  
Fei Liu

In this paper we study the robust control problems with respect to the finite-time interval of uncertain non-linear Markov jump systems. By means of Takagi–Sugeno fuzzy models, the overall closed-loop fuzzy dynamics are constructed through selected membership functions. By using the stochastic Lyapunov–Krasovskii functional approach, a sufficient condition is firstly established on the stochastic robust finite-time stabilization. Then, in terms of linear matrix inequalities techniques, the sufficient conditions on the existence of the stochastic finite-time controller are presented and proved. Finally, the design problem is formulated as an optimization one. The simulation results illustrate the effectiveness of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document