Local Hölder regularity for a doubly singular PDE

2018 ◽  
Vol 22 (03) ◽  
pp. 1850054
Author(s):  
Eurica Henriques

We establish the local Hölder continuity for the nonnegative bounded weak solutions of a certain doubly singular parabolic equation. The proof involves the method of intrinsic scaling and the parabolic version of De Giorgi’s iteration method.

2020 ◽  
Vol 28 (3) ◽  
pp. 51-82
Author(s):  
Hamid El Bahja

AbstractIn this paper we obtain the local Hölder regularity of the weak solutions for singular parabolic equations with variable exponents. The proof is based on DiBenedetto’s technique called intrinsic scaling; by choosing an appropriate geometry one can deduce energy and logarithmic estimates from which one can implement an iterative method to obtain the regularity result.


Sign in / Sign up

Export Citation Format

Share Document