A Hybrid Solution for Band-Gap Analysis of Vertical Vibration for Periodic Beam-Plate Coupled Systems Based on Variation Principle

Author(s):  
Qingsong Feng ◽  
Chengxin Dai ◽  
Wenjie Guo ◽  
Zhou Yang ◽  
Jianfei Lu

The variation principle widely used in structural dynamics analysis allows us to transform the differential equation of the boundary value problem into a functional with extreme value. In recent years, it has been applied to the band-gap analysis of periodic structures. However, for periodic beam-plate composite structures with periodic and ordinary boundaries, it is relatively difficult for the traditional energy methods, such as the Rayleigh–Ritz method, to construct the displacement functions that satisfy boundary conditions. Hence, a hybrid solution is proposed in this paper to account for various boundary conditions of the periodic beam-plate composite structure. Specifically, the displacement functions constructed by the plane wave series can automatically satisfy the periodic boundary conditions. With the ordinary boundaries modeled by artificial springs, the spectral functions conforming to arbitrary boundary conditions are used to represent the displacement functions. The proposed solution is used to solve the band-gap problems of CRTS-III and CRTS-II slab ballastless tracks in China, and the accuracy of the solution is verified by comparing the calculated results with numerical simulations. In addition, through band-gap formation mechanism analysis, the frequency range of propagating flexural waves in each track component is accurately evaluated, which provides a theoretical basis for refined structural vibration reduction in the future. The solution proposed in this paper is flexible and convenient, which can be extended to a more complex band-gap analysis of periodic structures.

2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2021 ◽  
pp. 109963622110204
Author(s):  
Xue-Yang Miao ◽  
Chao-Feng Li ◽  
Yu-Lin Jiang ◽  
Zi-Xuan Zhang

In this paper, a unified method is developed to analyze free vibrations of the three-layer functionally graded cylindrical shell with non-uniform thickness. The middle layer is composed of two-dimensional functionally gradient materials (2D-FGMs), whose thickness is set as a function of smooth continuity. Four sets of artificial springs are assigned at the ends of the shells to satisfy the arbitrary boundary conditions. The Sanders’ shell theory is used to obtain the strain and curvature-displacement relations. Furthermore, the Chebyshev polynomials are selected as the admissible function to improve computational efficiency, and the equation of motion is derived by the Rayleigh–Ritz method. The effects of spring stiffness, volume fraction indexes, configuration on of shell, and the change in thickness of the middle layer on the modal characteristics of the new structural shell are also analyzed.


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
Yiming Liu ◽  
Zhuang Lin ◽  
Hu Ding ◽  
Guoyong Jin ◽  
Sensen Yan

A modified Fourier–Ritz method is developed for the flexural and in-plane vibration analysis of plates with two rectangular cutouts with arbitrary boundary conditions, aiming to provide a unified solving process for cases that the plate has various locations or sizes of cutout, and different kinds of boundary conditions. Under the current framework, modifying the position of the cutout or the boundary conditions of the plate is just as changing the geometric parameters of the plate, and there is no need to change the solution procedures. The arbitrary boundary conditions can be obtained by setting the stiffness constant of the boundary springs which are fixed uniformly along the edges of the plate at proper values. The strain and kinetic energy functions of a plate with rectangular cutout are derived in detail. The convergence and accuracy of the present method are demonstrated by comparing the present results with those obtained from the FEM software. In this paper, free in-plane and flexural vibration characteristics of the plate with rectangular cutout under general boundary conditions are studied. From the results, it can be found that the geometric parameters and positions of the cutout and the boundary conditions of the plate will obviously influence the natural vibration characteristics of the structures.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Siyuan Bao ◽  
Shuodao Wang ◽  
Bo Wang

A modified Fourier–Ritz approach is developed in this study to analyze the free in-plane vibration of orthotropic annular sector plates with general boundary conditions. In this approach, two auxiliary sine functions are added to the standard Fourier cosine series to obtain a robust function set. The introduction of a logarithmic radial variable simplifies the expressions of total energy and the Lagrangian function. The improved Fourier expansion based on the new variable eliminates all the potential discontinuities of the original displacement function and its derivatives in the entire domain and effectively improves the convergence of the results. The radial and circumferential displacements are formulated with the modified Fourier series expansion, and the arbitrary boundary conditions are simulated by the artificial boundary spring technique. The number of terms in the truncated Fourier series and the appropriate value of the boundary spring retraining stiffness are discussed. The developed Ritz procedure is used to obtain accurate solution with adequately smooth displacement field in the entire solution domain. Numerical examples involving plates with various boundary conditions demonstrate the robustness, precision, and versatility of this method. The method developed here is found to be computationally economic compared with the previous method that does not adopt the logarithmic radial variable.


1995 ◽  
Vol 1 (2) ◽  
pp. 145-158 ◽  
Author(s):  
Arthur W. Leissa ◽  
Jinyoung So

This work presents a three-dimensional (3-D) method of analysis for determining the free vibration frequencies and corresponding mode shapes of truncated hollow cones of arbitrary thickness and having arbitrary boundary conditions. It also supplies the first known numerical results from 3-D analysis for such problems. The analysis is based upon the Ritz method. The vibration modes are separated into their Fourier components in terms of the circumferential coordinate. For each Fourier component, displacements are expressed as algebraic polynomials in the thickness and slant length coordinates. These polynomials satisfy the geometric boundary conditions exactly. Because the displacement functions are mathematically complete, upper bound values of the vibration frequencies are obtained that are as close to the exact values as desired. This convergence is demonstrated for a representative truncated hollow cone configuration where six-digit exactitude in the frequencies is achieved. The method is then used to obtain accurate and extensive frequencies for two sets of completely free, truncated hollow cones, one set consisting of thick conical shells and the other being tori having square-generating cross sections. Frequencies are presented for combinations of two values of apex angles and two values of inner hole radius ratios for each set of problems.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Lun Liu ◽  
Dengqing Cao ◽  
Shupeng Sun

The free vibration analysis of rotating ring-stiffened cylindrical shells with arbitrary boundary conditions is investigated by employing the Rayleigh–Ritz method. Six sets of characteristic orthogonal polynomials satisfying six classical boundary conditions are constructed directly by employing Gram–Schmidt procedure and then are employed to represent the general formulations for the displacements in any axial mode of free vibrations for shells. Employing those formulations during the Rayleigh–Ritz procedure and based on Sanders' shell theory, the eigenvalue equations related to rotating ring-stiffened cylindrical shells with various classical boundary conditions have been derived. To simulate more general boundaries, the concept of artificial springs is employed and the eigenvalue equations related to free vibration of shells under elastic boundary conditions are derived. By adjusting the stiffness of artificial springs, those equations can be used to investigate the vibrational characteristics of shells with arbitrary boundaries. By comparing with the available analytical results for the ring-stiffened cylindrical shells and the rotating shell without stiffeners, the method proposed in this paper is verified. Strong convergence is also observed from convergence study. Further, the effects of parameters, such as the stiffness of artificial springs, the rotating speed of the ring-stiffened shell, the number of ring stiffeners and the depth to width ratio of ring stiffeners, on the natural frequencies are studied.


2014 ◽  
Vol 624 ◽  
pp. 240-244
Author(s):  
Kai Peng Zhang ◽  
Cheng Yang ◽  
Han Wu

In this investigation, an improved Fourier series method (IFSM) is employed to predict the static and dynamic characteristics of annular sector plates with arbitrary boundary conditions. Regardless of boundary supports, the displacement function is invariantly expressed as a modified two-dimensional Fourier series containing sine and cosine function. It is capable of dealing with the possible discontinuities at elastic boundary edges. The unknown Fourier coefficients are treated as generalized coordinates, and determined using Rayleigh-Ritz method. Unlike most of the existing solution techniques, the current approach can be universally applied to a variety of edge restraints including all classical cases and their combinations. The accuracy and reliability of the current method are fully illustrated through all the numerical examples.


Sign in / Sign up

Export Citation Format

Share Document