LEONARD PAIRS AND THE ASKEY–WILSON RELATIONS
Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A:V→V and A*:V→V which satisfy the following two properties: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A* is diagonal. (ii) There exists a basis for V with respect to which the matrix representing A* is irreducible tridiagonal and the matrix representing A is diagonal. We call such a pair a Leonard pair on V. Referring to the above Leonard pair, we show there exists a sequence of scalars β,γ,γ*,ϱ,ϱ*,ω,η,η* taken from K such that both [Formula: see text] The sequence is uniquely determined by the Leonard pair provided the dimension of V is at least 4. The equations above are called the Askey–Wilson relations.