ON A THEOREM OF HUPPERT

2011 ◽  
Vol 10 (02) ◽  
pp. 295-301
Author(s):  
JIANGTAO SHI ◽  
CUI ZHANG

A well-known theorem of Huppert states that a finite group is soluble if its every proper subgroup is supersoluble. In this paper, we proved the following result: let G be a finite group. (1) If G has exactly n non-supersoluble proper subgroups, where 0 ≤ n ≤ 7 and n ≠ 5, then G is soluble. (2) G is a non-soluble group with exactly five non-supersoluble proper subgroups if and only if all non-supersoluble proper subgroups are conjugate maximal subgroups and G/Φ(G) ≅ A5, where Φ(G) is the Frattini subgroup of G. Furthermore, we also considered the influence of the number of non-abelian proper subgroups on the solubility of finite groups.

1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


Author(s):  
Ruslan V. Borodich

In the work of Beidleman and Smith [On Frattini-like subgroups, Glasgow Math. J. 35 (1993) 95–98], the following question was raised: “If [Formula: see text] is a subnormal subgroup of a finite group [Formula: see text] containing [Formula: see text], then whether the supersolvability of [Formula: see text] follows the supersolvability of [Formula: see text]”. This problem was considered in works of Selkin [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)], Skiba [On the intersection of all maximal [Formula: see text]-subgroups of a finite group, Prob. Phys. Math. Tech. 3(4) (2010) 56–62], Ballester-Bolinches [On [Formula: see text]-subnormal subgroups and Frattini-like subgroups of a finite group, Glasgow Math. J. 36 (1994) 241–247] and many other authors (see monograph [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)]). In this paper, we give the answer to the more general question: “Let [Formula: see text] be a local formation. If [Formula: see text] is a subnormal subgroup of a group [Formula: see text], then in what case [Formula: see text] will follow from [Formula: see text]”.


Author(s):  
M. J. Tomkinson

The Frattini subgroup φ(G) of a group G is the intersection of G and all its maximal subgroups. The following results for finite groups are well known:THEOREM A0. If G is a finite group, then the following three conditions are equivalent:(i) G is nilpotent,(ii) G/φ(G) is nilpotent,(iii) φ(G) ≥ G′.


1989 ◽  
Vol 12 (2) ◽  
pp. 263-266
Author(s):  
Prabir Bhattacharya ◽  
N. P. Mukherjee

For a finite group G and an arbitrary prime p, letSP(G)denote the intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we setSP(G)= G. Some properties of G are considered involvingSP(G). In particular, we obtain a characterization of G when each M in the definition ofSP(G)is nilpotent.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


2019 ◽  
Vol 22 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Victor S. Monakhov ◽  
Alexander A. Trofimuk

AbstractLetGbe a finite group. In this paper we obtain some sufficient conditions for the supersolubility ofGwith two supersoluble non-conjugate subgroupsHandKof prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove thatGis supersoluble in the following cases: one of the subgroupsHorKis nilpotent; the derived subgroup{G^{\prime}}ofGis nilpotent;{|G:H|=q>r=|G:K|}andHis normal inG. Also the supersolubility ofGwith two non-conjugate maximal subgroupsMandVis obtained in the following cases: all Sylow subgroups ofMand ofVare seminormal inG; all maximal subgroups ofMand ofVare seminormal inG.


1997 ◽  
Vol 40 (2) ◽  
pp. 243-246
Author(s):  
Yanming Wang

A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G and H∩N ≤ HG, where HG =: Core(H) = ∩g∈GHg is the maximal normal subgroup of G which is contained in H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to obtain results about the influence of the set of maximal subgroups on the structure of G.


2015 ◽  
Vol 22 (03) ◽  
pp. 449-458 ◽  
Author(s):  
A. Erfanian ◽  
M. Farrokhi D.G.

It is shown that a finite group G has four relative commutativity degrees if and only if G/Z(G) is a p-group of order p3 and G has no abelian maximal subgroups, or G/Z(G) is a Frobenius group with Frobenius kernel and complement isomorphic to ℤp × ℤp and ℤq, respectively, and the Sylow p-subgroup of G is abelian, where p and q are distinct primes.


2011 ◽  
Vol 53 (2) ◽  
pp. 401-410 ◽  
Author(s):  
LONG MIAO

AbstractA subgroup H is called weakly -supplemented in a finite group G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal subgroup of G contained in H. In this paper we will prove the following: Let G be a finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D1 ⊴ E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent supplement or weak -supplement in G, then G is p-nilpotent.


2006 ◽  
Vol 13 (01) ◽  
pp. 1-8
Author(s):  
Alireza Jamali ◽  
Hamid Mousavi

Let G be a finite group. We let [Formula: see text] and σ (G) denote the number of maximal subgroups of G and the least positive integer n such that G is written as the union of n proper subgroups, respectively. In this paper, we determine the structure of G/ Φ (G) when G is a finite soluble group with [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document