On alternating and symmetric groups which are quasi OD-characterizable
Let [Formula: see text] be the prime graph associated with a finite group [Formula: see text] and [Formula: see text] be the degree pattern of [Formula: see text]. A finite group [Formula: see text] is said to be [Formula: see text]-fold [Formula: see text]-characterizable if there exist exactly [Formula: see text] nonisomorphic groups [Formula: see text] such that [Formula: see text] and [Formula: see text]. The purpose of this paper is two-fold. First, it shows that the symmetric group [Formula: see text] is [Formula: see text]-fold [Formula: see text]-charaterizable. Second, it shows that there exist many infinite families of alternating and symmetric groups, [Formula: see text] and [Formula: see text], which are [Formula: see text]-fold [Formula: see text]-characterizable with [Formula: see text].