On n-irreducible ideals of commutative rings

2019 ◽  
Vol 19 (06) ◽  
pp. 2050120
Author(s):  
Nabil Zeidi

Let [Formula: see text] be a commutative ring with [Formula: see text] and [Formula: see text] a positive integer. The main purpose of this paper is to study the concepts of [Formula: see text]-irreducible and strongly [Formula: see text]-irreducible ideals which are generalizations of irreducible and strongly irreducible ideals, respectively. A proper ideal [Formula: see text] of [Formula: see text] is called [Formula: see text]-irreducible (respectively, strongly [Formula: see text]-irreducible) if for each ideals [Formula: see text] of [Formula: see text], [Formula: see text] (respectively, [Formula: see text]) implies that there are [Formula: see text] of the [Formula: see text]’s whose intersection is [Formula: see text] (respectively, whose intersection is in [Formula: see text]).

2019 ◽  
Vol 19 (06) ◽  
pp. 2050111 ◽  
Author(s):  
Ayman Badawi ◽  
Ece Yetkin Celikel

Let [Formula: see text] be a commutative ring with nonzero identity. In this paper, we introduce the concept of 1-absorbing primary ideals in commutative rings. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-absorbing primary ideal of [Formula: see text] if whenever nonunit elements [Formula: see text] and [Formula: see text], then [Formula: see text] or [Formula: see text] Some properties of 1-absorbing primary ideals are investigated. For example, we show that if [Formula: see text] admits a 1-absorbing primary ideal that is not a primary ideal, then [Formula: see text] is a quasilocal ring. We give an example of a 1-absorbing primary ideal of [Formula: see text] that is not a primary ideal of [Formula: see text]. We show that if [Formula: see text] is a Noetherian domain, then [Formula: see text] is a Dedekind domain if and only if every nonzero proper 1-absorbing primary ideal of [Formula: see text] is of the form [Formula: see text] for some nonzero prime ideal [Formula: see text] of [Formula: see text] and a positive integer [Formula: see text]. We show that a proper ideal [Formula: see text] of [Formula: see text] is a 1-absorbing primary ideal of [Formula: see text] if and only if whenever [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text], then [Formula: see text] or [Formula: see text]


2019 ◽  
Vol 19 (10) ◽  
pp. 2050199
Author(s):  
Mohammed Issoual ◽  
Najib Mahdou ◽  
Moutu Abdou Salam Moutui

Let [Formula: see text] be a commutative ring with [Formula: see text]. Let [Formula: see text] be a positive integer. A proper ideal [Formula: see text] of [Formula: see text] is called an n-absorbing ideal (respectively, a strongly n-absorbing ideal) of [Formula: see text] as in [D. F. Anderson and A. Badawi, On [Formula: see text]-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672] if [Formula: see text] and [Formula: see text], then there are [Formula: see text] of the [Formula: see text]’s whose product is in [Formula: see text] (respectively, if whenever [Formula: see text] for ideals [Formula: see text] of [Formula: see text], then the product of some [Formula: see text] of the [Formula: see text]s is contained in [Formula: see text]). The concept of [Formula: see text]-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of [Formula: see text] is a 1-absorbing ideal of [Formula: see text]). Let [Formula: see text] be a ring homomorphism and let [Formula: see text] be an ideal of [Formula: see text] This paper investigates the [Formula: see text]-absorbing and strongly [Formula: see text]-absorbing ideals in the amalgamation of [Formula: see text] with [Formula: see text] along [Formula: see text] with respect [Formula: see text] denoted by [Formula: see text] The obtained results generate new original classes of [Formula: see text]-absorbing and strongly [Formula: see text]-absorbing ideals.


2019 ◽  
Vol 18 (07) ◽  
pp. 1950123 ◽  
Author(s):  
Ayman Badawi ◽  
Mohammed Issoual ◽  
Najib Mahdou

Let [Formula: see text] be a commutative ring with [Formula: see text]. Recall that a proper ideal [Formula: see text] of [Formula: see text] is called a 2-absorbing ideal of [Formula: see text] if [Formula: see text] and [Formula: see text], then [Formula: see text] or [Formula: see text] or [Formula: see text]. A more general concept than 2-absorbing ideals is the concept of [Formula: see text]-absorbing ideals. Let [Formula: see text] be a positive integer. A proper ideal [Formula: see text] of [Formula: see text] is called an n-absorbing ideal of [Formula: see text] if [Formula: see text] and [Formula: see text], then there are [Formula: see text] of the [Formula: see text]’s whose product is in [Formula: see text]. The concept of [Formula: see text]-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of [Formula: see text] is a 1-absorbing ideal of [Formula: see text]). Let [Formula: see text] and [Formula: see text] be integers with [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called an [Formula: see text]-closed ideal of [Formula: see text] if whenever [Formula: see text] for some [Formula: see text] implies [Formula: see text]. Let [Formula: see text] be a commutative ring with [Formula: see text] and [Formula: see text] be an [Formula: see text]-module. In this paper, we study [Formula: see text]-absorbing ideals and [Formula: see text]-closed ideals in the trivial ring extension of [Formula: see text] by [Formula: see text] (or idealization of [Formula: see text] over [Formula: see text]) that is denoted by [Formula: see text].


Author(s):  
A. Yassine ◽  
M. J. Nikmehr ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with identity. In this paper, we introduce the concept of [Formula: see text]-absorbing prime ideals which is a generalization of prime ideals. A proper ideal [Formula: see text] of [Formula: see text] is called [Formula: see text]-absorbing prime if for all nonunit elements [Formula: see text] such that [Formula: see text], then either [Formula: see text] or [Formula: see text]. Some properties of [Formula: see text]-absorbing prime are studied. For instance, it is shown that if [Formula: see text] admits a [Formula: see text]-absorbing prime ideal that is not a prime ideal, then [Formula: see text] is a quasi–local ring. Among other things, it is proved that a proper ideal [Formula: see text] of [Formula: see text] is [Formula: see text]-absorbing prime if and only if the inclusion [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text] implies that [Formula: see text] or [Formula: see text]. Also, [Formula: see text]-absorbing prime ideals of PIDs, valuation domains, Prufer domains and idealization of a modules are characterized. Finally, an analogous to the Prime Avoidance Theorem and some applications of this theorem are given.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


2019 ◽  
Vol 26 (03) ◽  
pp. 519-528
Author(s):  
T. Asir ◽  
K. Mano

Let R be a commutative ring with non-zero identity and I its proper ideal. The total graph of R with respect to I, denoted by T (ΓI (R)), is the undirected graph with all elements of R as vertices, and where distinct vertices x and y are adjacent if and only if [Formula: see text]. In this paper, some bounds for the genus of T(ΓI(R)) are obtained. We improve and generalize some results for the total graphs of commutative rings. In addition, we obtain an isomorphism relation between two ideal based total graphs.


Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


2018 ◽  
Vol 17 (01) ◽  
pp. 1850003 ◽  
Author(s):  
Sina Hedayat ◽  
Esmaeil Rostami

An ideal [Formula: see text] of a ring [Formula: see text] is called pseudo-irreducible if [Formula: see text] cannot be written as an intersection of two comaximal proper ideals of [Formula: see text]. In this paper, it is shown that the maximal spectrum of [Formula: see text] is Noetherian if and only if every proper ideal of [Formula: see text] can be expressed as a finite intersection of pseudo-irreducible ideals. Using a result of Hochster, we characterize all [Formula: see text] quasi-compact Noetherian topological spaces.


Author(s):  
Esmaeil Rostami ◽  
Sina Hedayat ◽  
Reza Nekooei ◽  
Somayeh Karimzadeh

A proper ideal [Formula: see text] of a commutative ring [Formula: see text] is called lifting whenever idempotents of [Formula: see text] lift to idempotents of [Formula: see text]. In this paper, many of the basic properties of lifting ideals are studied and we prove and extend some well-known results concerning lifting ideals and lifting idempotents by a new approach. Furthermore, we give a necessary and sufficient condition for every proper ideal of a commutative ring to be a product of pairwise comaximal lifting ideals.


2015 ◽  
Vol 07 (01) ◽  
pp. 1450064 ◽  
Author(s):  
Guixin Deng ◽  
Lawrence Somer

For a finite commutative ring R and a positive integer k, let G(R, k) denote the digraph whose set of vertices is R and for which there is a directed edge from a to ak. The digraph G(R, k) is called symmetric of order M if its set of connected components can be partitioned into subsets of size M with each subset containing M isomorphic components. We primarily aim to factor G(R, k) into the product of its subdigraphs. If the characteristic of R is a prime p, we obtain several sufficient conditions for G(R, k) to be symmetric of order M.


Sign in / Sign up

Export Citation Format

Share Document