Poisson algebra structure on the invariants of pairs of matrices of degree three

Author(s):  
Z. Normatov ◽  
R. Turdibaev

We provide a table of multiplication of the Poisson algebra on the minimal set of generators of the invariants of pairs of matrices of degree three.

2015 ◽  
Vol 98 ◽  
pp. 57-76
Author(s):  
Xiaojun Chen ◽  
Hai-Long Her ◽  
Shanzhong Sun ◽  
Xiangdong Yang

2007 ◽  
Vol 14 (03) ◽  
pp. 521-536 ◽  
Author(s):  
Jie Tong ◽  
Quanqin Jin

Non-commutative Poisson algebras are the algebras having both an associative algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on [Formula: see text] are determined.


2009 ◽  
Vol 52 (2) ◽  
pp. 387-407 ◽  
Author(s):  
K. R. Goodearl ◽  
E. S. Letzter

AbstractSemiclassical limits of generic multi-parameter quantized coordinate rings A=$\mathcal{O}$q(kn) of affine spaces are constructed and related to A, for k an algebraically closed field of characteristic zero and q a multiplicatively antisymmetric matrix whose entries generate a torsion-free subgroup of k×. A semiclassical limit of A is a Poisson algebra structure on the corresponding classical coordinate ring R=$\mathcal{O}$(kn), and results of Oh, Park, Shin and the authors are used to construct homeomorphisms from the Poisson-prime and Poisson-primitive spectra of R onto the prime and primitive spectra of~A. The Poisson-primitive spectrum of R is then identified with the space of symplectic cores in kn in the sense of Brown and Gordon, and an example is presented (over ℂ) for which the Poisson-primitive spectrum of R is not homeomorphic to the space of symplectic leaves in kn. Finally, these results are extended from quantum affine spaces to quantum affine toric varieties.


2013 ◽  
Vol 61 (3) ◽  
pp. 569-579 ◽  
Author(s):  
A. Poniszewska-Marańda

Abstract Nowadays, the growth and complexity of functionalities of current information systems, especially dynamic, distributed and heterogeneous information systems, makes the design and creation of such systems a difficult task and at the same time, strategic for businesses. A very important stage of data protection in an information system is the creation of a high level model, independent of the software, satisfying the needs of system protection and security. The process of role engineering, i.e. the identification of roles and setting up in an organization is a complex task. The paper presents the modeling and design stages in the process of role engineering in the aspect of security schema development for information systems, in particular for dynamic, distributed information systems, based on the role concept and the usage concept. Such a schema is created first of all during the design phase of a system. Two actors should cooperate with each other in this creation process, the application developer and the security administrator, to determine the minimal set of user’s roles in agreement with the security constraints that guarantee the global security coherence of the system.


Science ◽  
2005 ◽  
Vol 307 (5708) ◽  
pp. 319d-319d
Author(s):  
G. J. Chin
Keyword(s):  

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Petr Kravchuk ◽  
Jiaxin Qiao ◽  
Slava Rychkov

Abstract CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios ρ, $$ \overline{\rho} $$ ρ ¯ . We prove a key fact that |ρ|, $$ \left|\overline{\rho}\right| $$ ρ ¯ < 1 inside the forward tube, and set bounds on how fast |ρ|, $$ \left|\overline{\rho}\right| $$ ρ ¯ may tend to 1 when approaching the Minkowski space.We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem).


2021 ◽  
pp. 1-10
Author(s):  
Niels Neumann ◽  
Sofia Doello ◽  
Karl Forchhammer

Nitrogen starvation induces developmental transitions in cyanobacteria. Whereas complex multicellular cyanobacteria of the order Nostocales can differentiate specialized cells that perform nitrogen fixation in the presence of oxygenic photosynthesis, non-diazotrophic unicellular strains, such as <i>Synechococcus elongatus</i> or <i>Synechocystis</i> PCC 6803, undergo a transition into a dormant non-growing state. Due to loss of pigments during this acclimation, the process is termed chlorosis. Cells maintain viability in this state for prolonged periods of time, until they encounter a useable nitrogen source, which triggers a highly coordinated awakening process, termed resuscitation. The minimal set of cellular activity that maintains the viability of cells during chlorosis and ensures efficient resuscitation represents the organism’s equivalent of the BIOS, the basic input/output system of a computer, that helps “booting” the operation system after switching on. This review summarizes the recent research in the resuscitation of cyanobacteria, representing a powerful model for the awakening of dormant bacteria.


2010 ◽  
Vol 17 (2) ◽  
pp. 391-404
Author(s):  
Mikael Vejdemo-Johansson

Abstract Kadeishvili's proof of theminimality theorem [T. Kadeishvili, On the homology theory of fiber spaces, Russ. Math. Surv. 35:3 (1980), 231–238] induces an algorithm for the inductive computation of an A ∞-algebra structure on the homology of a dg-algebra. In this paper, we prove that for one class of dg-algebras, the resulting computation will generate a complete A ∞-algebra structure after a finite amount of computational work.


Sign in / Sign up

Export Citation Format

Share Document