scholarly journals EFFECTS OF THE INSERTION OF AN ARCHWIRE THIN-WALLED SLEEVE IN ACCELERATING THE CANINE’S TRANSLATION

2020 ◽  
Vol 20 (09) ◽  
pp. 2040009
Author(s):  
YONGQING CAI

In sliding mechanics, resistance to sliding (RS), including friction, binding, and notching, generated at a wire-bracket interface has a bearing on the force transmitted to the teeth and further influences the biomechanical behavior associated with tooth movement efficiency. Objective: This study aimed to propose and verify the insertion of a rectangular thin-walled sleeve between an archwire and a bracket to minimize the resistance effect on the biomechanical behavior of tooth movement by using the finite element (FE) method. Material and methods: A 3D FE solid model was constructed and composed of mandibular dentitions, including the surrounding tooth-supporting structures and fixed self-ligating appliances. The translation of the left mandibular canine was simulated (0.1[Formula: see text]mm and 0.3[Formula: see text]mm) from the labial side to the lingual side with or without the thin-walled sleeve by using eight kinds of archwires with various dimensions and cross-sections by FE methods. Results: FE analysis indicated that the canine’s maximum initial displacement and the highest periodontal ligament (PDL) von Mises stress were mainly influenced by the orthodontic wire and the insertion of the thin-walled sleeve. Without the thin-walled sleeve, rectangular archwires could initiate a more optimal tissue response than round archwires. However, the insertion of the thin-walled sleeve between the small round archwire and the bracket significantly presented the most optimal biological responses in all of the cases. Conclusion: FE results revealed that the insertion of a thin-walled sleeve in a small round archwire and a bracket could have a positive influence on final tooth movement.

Author(s):  
Les Kalman ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Talita Suelen de Queiroz ◽  
João Paulo Mendes Tribst

Orofacial injuries are common occurrences during contact sports activities; however, there is an absence of data regarding the performance of hybrid occlusal splint mouthguards, especially during compressive loading. To evaluate the total deformation and stress concentration, a skull model was selected and duplicated to receive two different designs of mouthguard devices: one model received a conventional custom-made mouthguard (MG) with 4-mm thickness and the other received a novel hybrid occlusal splint-mouthguard (HMG) with the same thickness. Both models were subdivided into finite elements. The frictionless contacts were used, and a nonlinear analysis was performed simulating the compressive loading in occlusion. The results were presented in von-Mises stress maps (MPa) and Total Deformation (mm). A higher stress concentration in teeth was observed for the model with the conventional MG, while the HMG design displayed a promising mechanical response with lower stress magnitude. The HMG de-sign displayed a higher magnitude of stress on its occlusal portion than the MG design. The hybrid mouthguard (HMG) reduced (1) jaw displacement during chewing and (2) the generated stresses in maxil-lary and mandibular teeth.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Neelambar Kaipatur ◽  
Yuchin Wu ◽  
Samer Adeeb ◽  
Thomas Stevenson ◽  
Paul Major ◽  
...  

The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built usingμCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. Forin vivovalidation of the FE model, Sprague-Dawley rats (n=25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Z. Q. Zhang ◽  
J. L. Yang

Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation.Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads.Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures’ biomechanical behavior.Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies.Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption.


Author(s):  
Mohamad Najari ◽  
Marwan El-Rich ◽  
Samer Adeeb ◽  
Bachar Taha

In orthodontic treatment, anchorage is the most important element that affects the treatment’s success. To improve the load bearing capacity of the anchorage there are several devices developed in recent decades such as midpalatal implants and onplants but they also have limitation on directions of applied load and their support position adjustability. The purpose of this study was to investigate the efficiency of a new anchorage device by analyzing the load-bearing and stress distribution among the cortical and cancellous bones of the mandible as well as the anchorage system components using nonlinear 3D Finite Element (FE) method. The new device is composed of an adjustable stainless steel plate equipped with bracket and mounted with two titanium mini-screws into the mandible. The response of this new system was compared to an isolated mini-screw system under different loading scenarios. A maximum of 500gr force was applied in different directions on the bracket and the isolated mini-screw head to simulate the orthodontic loading. Using the new anchorage device reduced von-Mises stress in the whole structure approximately by 50% comparing to the isolated mini-screw. In the cortical bone and depending on the direction of the applied force, von-Mises stress decreased from 6 to 3MPa under vertical shear force and from 6 to 1.5MPa under horizontal and inclined shear forces. In the cancellous bone the stress decreased similarly as in the cortical bone from 0.6 to ≈0.3MPa under horizontal and inclined shear. Under vertical shear force the decrease was less significant from 0.57MPa to 0.5MPa. This new device while offering wide fields of orthodontic forces applications thanks to its bracket provides the same resistive force (500gr) as the isolated mini-screw with much lower stresses in the bone and anchorage implant as well. The next step is to investigate the efficiency of this new device in the teeth movement.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
J. Perry ◽  
M. Perl

During the firing of guns, the barrel undergoes two major damaging processes: wear of its inner surface and internal cracking. Barrel's are condemned based on either the increase of their internal diameter due to wear or the severity of their internal cracking. The cost of replacing such a damaged gun barrel runs in the tenth of thousands of U.S.$. Therefore, cost effective methods are sought for restoring such gun barrels. In the present analysis, a new method is proposed for refurbishing vintage gun barrels by machining their inner damaged layer and replacing it by an intact, autofrettaged, shrink-fit liner that will restore the barrel to its original performance. The design of the shrink-fitted liner is based on two design principles. First, the von-Mises residual stress distribution through the thickness of the barrel at each of its cross sections along the inserted liner should be at least equal in magnitude to von Mises stress, which prevailed in the original barrel. Second, once the maximum pressure is applied to the compound barrel, the von-Mises stresses at the inner surfaces of the liner machined barrel should be equal to their respective yield stresses. The preliminary results demonstrate the ability of this process to mend such barrels and bringing them back to their initial safe maximum pressure (SMP) and their intact conditions, rather than condemn them. Furthermore, from the authors' experience, based on a preliminary rough estimate, such an alternative seems to be cost effective.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Miao Na ◽  
Timothy J. Beavers ◽  
Abhijit Chandra ◽  
Sarah A. Bentil

Abstract Finite element (FE) method has been widely used for gaining insights into the mechanical response of brain tissue during impacts. In this study, a coupled Eulerian−Lagrangian (CEL) formulation is implemented in impact simulations of a head system to overcome the mesh distortion difficulties due to large deformation in the cerebrospinal fluid (CSF) region and provide a biofidelic model of the interaction between the brain and skull. The head system used in our FE model is constructed from the transverse section of the human brain, with CSF modeled by Eulerian elements. Spring connectors are applied to represent the pia-arachnoid connection between the brain and skull. Validations of the CEL formulation and the FE model are performed using the experimental results. The dynamic response of brain tissue under noncontact impacts and the brain regions susceptible to injury are evaluated based on the intracranial pressure (ICP), maximum principal strain (MPS), and von Mises stress. While tracking the critical MPS location on the brain, higher likelihood of contrecoup injury than coup injury is found when sudden brain−skull motion takes place. The accumulation effect of CSF in the ventricle system, under large relative brain−skull motion, is also identified. The FE results show that adding relative angular velocities, to the translational impact model, not only causes a diffuse high strain area, but also cause the temporal lobes to be susceptible to cerebral contusions since the protecting CSF is prone to be squeezed away at the temporal sites due to the head rotations.


2019 ◽  
Vol 18 ◽  
pp. e191667
Author(s):  
Felipe Franco Ferreira ◽  
Guilherme Almeida Borges ◽  
Letícia Del Rio Silva ◽  
Daniele Valente Velôso ◽  
Thaís Barbin ◽  
...  

Aim: The aim of this study was to investigate the biomechanical behavior of implant-retained mandibular overdentures using Micro ERA® system with different implant position and angulation by finite element analysis (FEA). Methods: Four 3D finite element models of simplified mandibular overdentures were constructed, using one Bränemark implant with a Micro ERA® attachment. The implant was positioned on the canine or lateral incisor area with an angulation of either 0º (C-0º; LI-0º) or 17º (C-17º, LI-17º) to the vertical axis. A 100 N axial load was applied in one side simultaneously, from first premolar to second molar. In all models it was analyzed the overdenture displacement, compressive/tensile stress in the bone-implant interface, and also the von Mises equivalent stress for the nylon component of the housing. The stresses were obtained (numerically and color-coded) for further comparison among all the groups. Results: The displacement on the overdenture was higher at the posterior surface for all groups, especially in the C-17º group. When comparing the compressive/tensile stress in the bone-implant interface, the lateral-incisor groups (LI-0º and LI-17º) had the highest compressive and lowest tensile stress compared to the canine groups (C-0º and C-17º). The von Mises stress on the nylon component generated higher stress value for the LI-0º among all groups. Conclusions: The inclination and positioning of the implant in mandibular overdenture interferes directly in the stress distribution. The results showed that angulated implants had the highest displacement. While the implants placed in the lateral incisor position presented lower compressive and higher tensile stress respectively. For the attachment the canine groups had the lowest stress.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7243
Author(s):  
Basilio De la Torre ◽  
Loreto Barrios ◽  
Juan De la Torre-Mosquera ◽  
Julia Bujan ◽  
Miguel A. Ortega ◽  
...  

Wear debris in total hip arthroplasty is one of the main causes of loosening and failure, and the optimal acetabular fixation for primary total hip arthroplasty is still controversial because there is no significant difference between cemented and uncemented types for long-term clinical and functional outcome. To assess and predict, from a theoretical viewpoint, the risk of wear with two types of polyethylene liners, cemented and uncemented, a simulation using the finite element (FE) method was carried out. The risk of wear was analyzed according to different variables: the polyethylene acetabular component’s position with respect to the center of rotation of the hip; the thickness of the polyethylene insert; the material of the femoral head; and the relationship of the cervical–diaphyseal morphology of the proximal end of the femur to the restoration of the femoral offset. In all 72 simulations studied, a difference was observed in favour of a cemented solution with respect to the risk of wear. With regard to the other variables, the acetabular fixation, the thickness of the polyethylene, and the acetabular component positioning were statistically significant. The highest values for the risk of wear corresponded to a smaller thickness (5.3 mm), and super-lateral positioning at 25 mm reached the highest value of the von Mises stress. According to our results, for the reconstruction of the acetabular side, a cemented insert with a thickness of at least 5 mm should be used at the center of rotation.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8385
Author(s):  
Dimitrios Koulocheris ◽  
Clio Vossou

The design and construction of tanks used for the carriage of dangerous liquid materials fall within strict standards (i.e., EN13094:2015, R111). According to these standards, their supporting structures (Ss), used for the mounting of the tank on the freight vehicle, need to be able to sustain the developed stresses. Optimizing the number of supporting structures can lead to more efficient tank designs that allow the tank to transport more liquid material and need less time to be manufactured. In the present paper, the effect of the reduction of the number of supporting structures in (a) the structural integrity of the tank construction, (b) its dynamic behavior and (c) the load-sharing of the tank to the axles of the freight vehicle is investigated using the finite element (FE) method. As a case study a box-shaped tank mounted on a four-axle freight vehicle with a technical permissible maximum laden mass of 35 tn, five Ss are used. Four FE models with a decreasing number of Ss were built in ANSYS® 2020R1 CAE Software and their structural integrity was investigated. For each design, a feasible design was developed and evaluated in terms of structural integrity, dynamic behavior and axle load distribution. The results of the FE analysis were reviewed in terms of maximum equivalent Von Mises stress and stress developed on the welding areas. Additionally, the axle-load sharing was qualitatively assessed for all feasible designs. The main outcome of this work is that, overall, the use of two Ss leads to a more efficient design in terms of the manufacturing and the mounting of the tank construction on the vehicle and on a more efficient freight vehicle. More specifically, the reduction of the number of Ss from five to two lead to reduction of the tank tare weight by 9.6% with lower eigenfrequencies.


2010 ◽  
Vol 04 (04) ◽  
pp. 374-382 ◽  
Author(s):  
Oguz Eraslan ◽  
Ozgur Inan ◽  
Asli Secilmis

Objectives: The biomechanical behavior of the superstructure plays an important role in the functional longevity of dental implants. However, information about the influence of framework design on stresses transmitted to the implants and supporting tissues is limited. The purpose of this study was to evaluate the effects of framework designs on stress distribution at the supporting bone and supporting implants.Methods: In this study, the three-dimensional (3D) finite element stress analysis method was used. Three types of 3D mathematical models simulating three different framework designs for implant- supported 3-unit posterior fixed partial dentures were prepared with supporting structures. Convex (1), concave (2), and conventional (3) pontic framework designs were simulated. A 300-N static vertical occlusal load was applied on the node at the center of occlusal surface of the pontic to calculate the stress distributions. As a second condition, frameworks were directly loaded to evaluate the effect of the framework design clearly. The Solidworks/Cosmosworks structural analysis programs were used for finite element modeling/analysis.Results: The analysis of the von Mises stress values revealed that maximum stress concentrations were located at the loading areas for all models. The pontic side marginal edges of restorations and the necks of implants were other stress concentration regions. There was no clear difference among models when the restorations were loaded at occlusal surfaces. When the veneering porcelain was removed, and load was applied directly to the framework, there was a clear increase in stress concentration with a concave design on supporting implants and bone structure.Conclusions: The present study showed that the use of a concave design in the pontic frameworks of fixed partial dentures increases the von Mises stress levels on implant abutments and supporting bone structure. However, the veneering porcelain element reduces the effect of the framework and compensates for design weaknesses. (Eur J Dent 2010;4:374-382)


Sign in / Sign up

Export Citation Format

Share Document