q-Analogs of Lidstone expansion theorem, two-point Taylor expansion theorem, and Bernoulli polynomials

2019 ◽  
Vol 17 (06) ◽  
pp. 853-895
Author(s):  
Mourad E. H. Ismail ◽  
Zeinab S. I. Mansour

In this paper, we introduce a generalization of the [Formula: see text]-Taylor expansion theorems. We expand a function in a neighborhood of two points instead of one in three different theorems. The first is a [Formula: see text]-analog of the Lidstone theorem where the two points are 0 and 1 and we expand the function in [Formula: see text]-analogs of Lidstone polynomials which are in fact [Formula: see text]-Bernoulli polynomials as in the classical case. The definitions of these [Formula: see text]-Bernoulli polynomials and numbers are introduced. We also introduce [Formula: see text]-analogs of Euler polynomials and numbers. On the other two expansion theorems, we expand an analytic function around arbitrary points [Formula: see text] and [Formula: see text] either in terms of the polynomials [Formula: see text] or in terms of the polynomials [Formula: see text]. As an application, we introduce a new series expansion for the basic hypergeometric series [Formula: see text].

2020 ◽  
Vol 108 (122) ◽  
pp. 103-120
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The formula for the sums of powers of positive integers, given by Faulhaber in 1631, is proven by using trigonometric identities and some properties of the Bernoulli polynomials. Using trigonometric functions identities and generating functions for some well-known special numbers and polynomials, many novel formulas and relations including alternating sums of powers of positive integers, the Bernoulli polynomials and numbers, the Euler polynomials and numbers, the Fubini numbers, the Stirling numbers, the tangent numbers are also given. Moreover, by applying the Riemann integral and p-adic integrals involving the fermionic p-adic integral and the Volkenborn integral, some new identities and combinatorial sums related to the aforementioned numbers and polynomials are derived. Furthermore, we serve up some revealing and historical remarks and observations on the results of this paper.


2021 ◽  
Vol 7 (3) ◽  
pp. 3845-3865
Author(s):  
Hye Kyung Kim ◽  
◽  
Dmitry V. Dolgy ◽  

<abstract><p>Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.</p> <p>In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.</p></abstract>


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


2020 ◽  
Vol 72 (4) ◽  
pp. 467-482
Author(s):  
T. Komatsu ◽  
J. L. Ramírez ◽  
V. F. Sirvent

UDC 517.5 We introduce a ( p , q ) -analogue of the poly-Euler polynomials and numbers by using the ( p , q ) -polylogarithm function.  These new sequences are generalizations of the poly-Euler numbers and polynomials.  We give several combinatorial identities and properties of these new polynomials, and also show some relations with ( p , q ) -poly-Bernoulli polynomials and ( p , q ) -poly-Cauchy polynomials. The ( p , q ) -analogues generalize the well-known concept of the q -analogue.


Author(s):  
Waseem Khan

Motivated by Kim-Kim [19] introduced the new type of degenerate poly- Bernoulli polynomials by means of the degenerate polylogarithm function. In this paper, we define the degenerate poly-Frobenius-Euler polynomials, called the new type of degenerate poly-Frobenius-Euler polynomials, by means of the degenerate polylogarithm function. Then, we derive explicit expressions and some identities of those numbers and polynomials.


Sign in / Sign up

Export Citation Format

Share Document