Synthesis and Antibacterial Activity of Silver Nanoparticles Against Escherichia coli and Pseudomonas sp.

Author(s):  
Md. Irfanul Hoque ◽  
Sultana Afrin Jahan Rima ◽  
Md. Salah Uddin ◽  
M. Julkarnain

Silver nanoparticles (AgNPs) have been synthesized by chemical reduction method using ascorbic acid as reducing agent. Silver nitrate (AgNO[Formula: see text] and sodium dodecyl sulfate (SDS) have been used as precursor and stabilizer, respectively. The prepared samples were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The antibacterial activity of prepared silver nanoparticles has been assessed by using the disc diffusion method against pathogenic, gram-negative bacterial strains including Escherichia coli and Pseudomonassp. To evaluate the potential antibacterial properties of AgNPs, the discs have been impregnated and dried with three different doses like 50, 100 and 150[Formula: see text][Formula: see text]l of 20[Formula: see text][Formula: see text]g/ml concentrated AgNPs solution and placed on the Petri-dishes. The antibiotic kanamycin (5[Formula: see text][Formula: see text]g) was used as control. In all the cases, a clear and distinct zone of inhibition is observed, which suggests that AgNPs can be used as effective growth inhibitors of various bacterial species and would be promising candidate for future development of antibacterial agents.

2016 ◽  
Vol 60 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lia M. Junie ◽  
Mihaela L. Vică ◽  
Mirel Glevitzky ◽  
Horea V. Matei

AbstractThe first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aruna Jyothi Kora ◽  
Jayaraman Arunachalam

A simple and ecofriendly procedure have been devised for the green synthesis of silver nanoparticles using the aqueous extract of gum tragacanth (Astragalus gummifer), a renewable, nontoxic natural phyto-exudate. The water soluble components in the gum act as reductants and stabilizers. The generated nanoparticles were analyzed using UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, and Raman spectroscopy. The role of gum concentration and reaction time on the synthesis of nanoparticles was studied. By regulating the reaction conditions, spherical nanoparticles of13.1±1.0 nm size were produced. Also, the possible functional groups involved in reduction and capping of nanoparticles has been elucidated. The antibacterial activity of the fabricated nanoparticles was tested on model Gram-negative and Gram-positive bacterial strains with well-diffusion method. These nanoparticles exhibited considerable antibacterial activity on both the Gram classes of bacteria, implying their potential biomedical applications.


2014 ◽  
Vol 875-877 ◽  
pp. 87-90 ◽  
Author(s):  
Chutimon Satirapipathkul ◽  
Tanakan Chatdum

The film-forming potential of isolate of seed polysaccharide fromCassia fistulawas investigated. Increasing the glycerol concentration in the film increased elongation at break, film solubility and water vapor permeability but decreased tensile strength (TS). The film impregnated with the acetone extract ofAtractylodes lanceawas assessed for inhibition ofEscherichia coliandStaphylococcus aureus. The obtained results showed that the films exhibited antibacterial activity against both bacterial strains. Disc-diffusion assay revealed that the film resulted in a larger inhibition zone around the film onStaphylococcus aureusthan it did onEscherichia coliat the same extract concentrations (0.1 to 0.9 wt %). It can be seen that the film has satisfactory physical and antibacterial properties.


2016 ◽  
Vol 1 (1-2) ◽  
pp. 05-09 ◽  
Author(s):  
Samuel L. Oputah ◽  
Kolawole O. Ajanaku ◽  
Raphael C. Mordi ◽  
Joseph A. O. Olugbuyiro ◽  
Shade J. Olorunshola ◽  
...  

Phytochemical and antibacterial properties of ethanolic extract of the seeds of African Star Apple (Chrysophyllum albidum) were investigated. The phytochemical result revealed the presence of saponins, carbohydrates, flavonoids, quinones, cardiac glycosides, fatty acids and terpenoids. The antibacterial activity was studied using agar well diffusion method at different concentrations against six pathogenic bacterial strains, three Gram-positive (Staphylococcus aureus, Micrococcus varians and Bacillus cereus) and three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris). Significant inhibitory activities were exhibited by the ethanolic seed extracts for all test organisms except Bacillus cereus. Zone of inhibition of the crude ethanolic extract was correlated with that of a standard antibiotic Gentamicin, for antibacterial activity. The results indicated a notable inhibition of the bacterial growth.


Author(s):  
Dalila Razni ◽  
Linda Rouisset ◽  
Elhassan Benyagoub

This study is a part of the valorization of extract from three most commonly used Algerian spices, namely; caraway and cumin seeds and cinnamon bark. On the one hand, it aims at characterizing the chemical indices of extracted essential oils and evaluating the antibacterial activity of each essential oil by titration and disc diffusion method respectively. On the other hand, it attempts at evaluating the combined action of essential oils against four reference pathogenic bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis by well and Chabbert-type diffusion method. The essential oils obtained by the hydrodistillation method have a relatively average extraction about 1.43, 2.3 and 2.5%, respectively for caraway, cumin, and cinnamon. The acid index indicates the behavior and amount of free acids present in the essential oil, in which the acid and saponification indices of cinnamon essential oil indicate a value of 4.48 and 168.56 respectively. It can also inform us about the susceptibility of the oil to undergo alterations. The antibacterial activity results showed that cinnamon essential oil (EO) proved to be the most active against the tested bacterial strains; caraway EO was active against Enterococcus faecalis, and the antibacterial action of cumin EO was the lowest. However, the association of the extracted essential oils has a higher synergistic effect than the independent effect of each essential oil, in which the MIC value found was estimated at 10 to 20 (V/V), 40 to 50 (V/V) and 50 to 70 (V/V) respectively for cinnamon, cumin and caraway. The obtained results show that the response to the antibacterial activity varies according to the plant species used and the extract tested alone or in combination.


2021 ◽  
Vol 9 (2) ◽  
pp. 75
Author(s):  
Luthfiah Luthfiah ◽  
Dwi Setyati ◽  
Sattya Arimurti

Dumortiera hirsuta is one of the liverworts that can be used as a medicinal to prevent infection by pathogenic bacteria. The content of secondary metabolites of D. hirsuta has potential as antibacterial properties includes flavonoids, alkaloids and steroids. This research is to analyze the antibacterial activity of moss D. hirsuta against pathogenic bacteria that will be beneficial to humans. Liverworts of D. hirsuta were extracted using ethyl acetate solvent and tested against three types of pathogenic bacteria using the agar well-diffusion method. The results of this study indicated that the ethyl acetate extract of D. hirsuta at 100% concentration could inhibit the growth of Escherichia coli, Staphylococcus aureus, and Salmonella typhi bacteria. The range of antibacterial activity categories of the ethyl acetate extract of D. hirsuta to E. coli, S. aureus, and S. typhi between weak to moderate.


2011 ◽  
Vol 39 (2) ◽  
pp. 124 ◽  
Author(s):  
ANDREEA STĂNILĂ ◽  
Cornelia BRAICU ◽  
Sorin STĂNILĂ ◽  
Raluca M. POP

The antibacterial properties of differently copper and cobalt amino acids complexes on agar plates was investigated in the present study. The antibacterial activity of amino acid complexes was evaluated against on three bacteria strains (Escherichia coli, Bacillus cereus, Micrococcus luteus). Generally, the amino acids complexes were mainly active against gram-positive organisms, species like Micrococcus luteus being the most susceptible strain tested. It was registered a moderate antibacterial activity against Bacillus cereus. The microorganisms Escherichia coli, which are already known to be multi-resistant to drugs, were also resistant to the amino acids complexes but also to the free salts tested. Escherichia coli were susceptible only to the CoCl2 and copper complex with phenylalanine. The complexes with leucine and histidine seem to be more active than the parent free ligand against one or more bacterial species. Moderate activity was registered in the case of complexes with methionine and phenylalanine. From the complexes tested less efficient antibacterial activity was noted in the case of complexes with lysine and valine. These results show that cobalt and copper complexes have an antibacterial activity and suggest their potential application as antibacterial agents.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 533
Author(s):  
Abdulmajeed S. H. Alsamarrai ◽  
Saba S. Abdulghani

A series of new acetamide derivatives 22–28 of primary and secondary amines and para-toluene sulphinate sodium salt have been synthesized under microwave irradiation and assessed in vitro for their antibacterial activity against one Gram-positive and two Gram-negative bacterial species such as S. pyogenes, E. coli, and P. mirabilis using the Mueller-Hinton Agar diffusion (well diffusion) method. The synthesized compounds with significant differences in inhibition diameters and MICs were compared with those of amoxicillin, ampicillin, cephalothin, azithromycin and doxycycline. All of the evaluated acetamide derivatives were used with varying inhibition concentrations of 6.25, 12.5, 37.5, 62.5, 87.5, 112.5 and 125 µg/mL. The results show that the most important antibacterial properties were displayed by the synthetic compounds 22 and 24, both of bear a para-chlorophenyl moiety incorporated into the 2-position moiety of acetamide 1. The molecular structures of the new compounds were determined using the FT-IR and 1H-NMR techniques.


Author(s):  
Abdulmajeed Alsamarrai ◽  
Saba Abdulghani

A sequence of new acetamide derivatives 9-15 of primary, secondary amine, and para-toluene sulphinate sodium salt have been synthesized under microwave irradiation and assessed in vitro for their antibacterial activity against one Gram-positive and two Gram-negative bacterial species such as S. pyogenes, E. coli, and P.mirabilis using the Mueller-Hinton Agar diffusion (well diffusion) method. The synthesized compounds with significant differences in inhibition diameters and MICs were compared with those of amoxicillin, ampicillin, cephalothin, azithromycin and doxycycline. All of the evaluated acetamide derivatives were used with varying inhibition concentrations of 6.25, 12.5, 37.5, 62.5, 87.5, 112.5 and 125 µg/ml. The results show that the most important antibacterial properties exercised by the synthetic compounds 9 and 11 bearing para-chlorophenyl moiety incorporated into the 2-position moiety of acetamide 2. The molecular structures of the new compounds were determined using FT-IR, 1H-NMR techniques.


2020 ◽  
Vol 11 (4) ◽  
pp. 11666-11678

The main goal of this study is to modify cotton as cellulose-based fabrics through cationization to improve its dyeing with acid dyes and its antibacterial. Quat-188 was applied to cotton to prepare cationized cotton, overcoming the negative charges between cotton and acid dyes during the dyeing process without using any electrolyte via the pad-dry-cure method. Then the cationized cotton fabrics were treated with the prepared silver nanoparticles to improve their antibacterial properties. The untreated and treated cotton fabrics were dyed with two acid dyes Acid Brilliant Blue PB 100% (acid blue 25; AB25) and Acid Metanil Yellow MT 100% (acid yellow 36) at concentrations of 2%, 4%, and 6% of by exhaust method. Colour strength, color, and washing fastness of untreated and treated cotton fabrics were studied. Antibacterial properties of fabrics were also evaluated against S. aureus and E. coli by using the disk diffusion method. Dyeing properties showed that the treated cotton fabrics significantly improved color strength and fastness properties (light, washing, perspiration, and rubbing). Also, the antibacterial properties of treated cotton fabrics showed antibacterial activity towards tested bacteria. This study reveals that modified cotton fabrics via cationization with Quat-188 and AgNPs have multifunctional properties from their ability for acid dyes and their higher antibacterial activity towards Gram-positive and Gram-negative bacteria that is can be used in many applications.


Sign in / Sign up

Export Citation Format

Share Document