A Facile Microwave-Assisted Green Synthetic Approach of Solid-State Fluorescent Carbon-Dot Nanopowders Derived from Biowaste for Potential Latent-Fingerprint Enhancement

Author(s):  
Pogisego Dinake ◽  
Gothatamang Norma Phokedi ◽  
Janes Mokgadi ◽  
Anthony Ntshekisang ◽  
Mmamiki Ayanda Botlhomilwe ◽  
...  

Latent fingerprint detection and visualization remains a challenge especially where problems of poor contrast, auto-fluorescent surfaces and patterned backgrounds are encountered. As a result there is an increasing interest in the development of simple, cost effective, rapid and yet accurate methods for latent fingerprint detection and recovery. Herein, this paper reports the synthesis of bright blue photoluminescent carbon dots (C-dots) via an eco-friendly and simple one-step microwave-assisted carbonization of potato peels’ biomass. The C-dots were prepared in only 3 min and ground into powder and used without any further treatment. The as-prepared C-dots were characterized using atomic force microscope, Fourier transform infra-red spectroscopy and X-ray diffraction with an average size of 1.0[Formula: see text]nm. The optical properties of the as-prepared C-dots were studied by UV-Vis spectroscopy and spectrofluorometer which established an excitation and emission wavelengths of 390[Formula: see text]nm and 480[Formula: see text]nm, respectively. Owing to their strong solid state fluorescence, the as-prepared C-dots’ powder was successfully used in latent fingerprint detection and imaging on porous and nonporous surfaces. Latent fingerprints were recovered with high resolution and excellent quality providing sufficient details for individual identification. These findings demonstrate that C-dots derived from biomass have a great potential in latent fingerprint analysis for forensic applications.

2020 ◽  
Vol 5 (29) ◽  
pp. 8915-8923
Author(s):  
Yaping Wang ◽  
Wei Ju ◽  
Jianjun Chen ◽  
Ziying Liu ◽  
Jianshe Wang

Author(s):  
Utkarsh Jain ◽  
CS Pundir ◽  
Shaivya Gupta ◽  
Nidhi Chauhan

Recent advancements in nanotechnology, for the biosynthesis of metal nanoparticles through enormous techniques, showed multidimensional developments. One among many facets of nanotechnology is to procure and adopt new advancements for green technology over chemical reduction synthesis. This adaptation for acquiring green nanotechnology leads us to a new dimension of nanobiotechnology. In order to imply one such efforts, in this study the emphasis is being laid on the synthesis of MgO nanoparticles using green technology and eliminating chemical reduction methods. Different characterization techniques such as UV–Vis spectroscopy, transmission electron microscopy, and dynamic light scattering were used to carry out the experiments. The average size of MgO nanoparticles were obtained in the range of 85–95 nm, when synthesized by various sources. The extracts of plants were capable of producing MgO nanoparticles efficiently and exhibited good results during cyclic voltammetry and electrochemical impedance spectroscopy study. The electrode modified with MgO nanoparticles (plant extract) showed good stability (90 days) and high conductivity. This study reports cost-effective and environment-friendly method for synthesis of MgO nanoparticles using plant extracts. The process is rapid, simple, and convenient and can be used as an alternative to chemical method.


2019 ◽  
Vol 777 ◽  
pp. 638-645 ◽  
Author(s):  
Ian Pompermayer Machado ◽  
Verônica Carvalho Teixeira ◽  
Cássio Cardoso Santos Pedroso ◽  
Hermi Felinto Brito ◽  
Lucas Carvalho Veloso Rodrigues

2020 ◽  
Vol 8 (6) ◽  
pp. 1535-1539

There is a great interest in the development of green protocols to avoid environmental and health hazards. In this research, the eco-friendly and cost-effective synthesis of gold nanoparticles (GNPs) has been achieved by the green method using ethanolic turmeric crude extract at pH 7. The bioac-tive compounds of turmeric crude extract are responsible for the reduction, capping and sta-bility of the GNPs. The characterization of GNPs was carried out by ultraviolet-visible (UV-vis) spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The UV-vis spectral study indicated the formation of GNPs with a surface plasmon resonance (SPR) band at 547 nm. FTIR analysis of turmeric crude extract and GNPs showed that phenolic groups reduced the gold ions. The FESEM analysis showed the polydisperse morphology of GNPs with average size of 26.6 nm±7.4 nm. The elemental composition determined by EDX re-vealed the presence of gold. The synthesized GNPs can be useful in a variety of applications involving medicine, cosmetics, environment and nutraceutical.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2383
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano ◽  
José M. Álvarez-Suarez

Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Gaurav Sharma ◽  
Nakuleshwar Dut Jasuja ◽  
Manoj Kumar ◽  
Mohammad Irfan Ali

The present study explores biological synthesis of silver nanoparticles (AgNPs) using the cell-free extract ofSpirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract ofS. platensisshowed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is,Escherichia coli, MTCC-9721;Proteus vulgaris, MTCC-7299;Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is,Staphylococcus aureus, MTCC-9542;S. epidermidis, MTCC-2639;Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI) that is31.3±1.11inP. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 627 ◽  
Author(s):  
Bianca Moldovan ◽  
Vladislav Sincari ◽  
Maria Perde-Schrepler ◽  
Luminita David

The present study reports for the first time the efficacy of bioactive compounds from Ligustrum ovalifolium L. fruit extract as reducing and capping agents of silver nanoparticles (AgNPs), developing a green, zero energetic, cost effective and simple synthesis method of AgNPs. The obtained nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), confirming that nanoparticles were crystalline in nature, spherical in shape, with an average size of 7 nm. The FTIR spectroscopy analysis demonstrated that the AgNPs were capped and stabilized by bioactive molecules from the fruit extract. The cytotoxicity of the biosynthesized AgNPs was in vitro evaluated against ovarian carcinoma cells and there were found to be effective at low concentration levels.


Nanoscale ◽  
2021 ◽  
Author(s):  
Tong Wei ◽  
Jiachen Han ◽  
Le Wang ◽  
Jiaqi Tao ◽  
Hu Zhang ◽  
...  

Fingerprints form when fingers touch a solid surface, which is considered the best way for individual identification. However, the current latent fingerprint (LFP) developing methods cannot meet the demand for...


Sign in / Sign up

Export Citation Format

Share Document