NON-DIFFERENTIABLE DEFORMATIONS OF ℝn

2006 ◽  
Vol 03 (07) ◽  
pp. 1395-1415 ◽  
Author(s):  
JACKY CRESSON

Many problems of physics or biology involve very irregular objects like the rugged surface of a malignant cell nucleus or the structure of space-time at the atomic scale. We define and study non-differentiable deformations of the classical Cartesian space ℝn which can be viewed as the basic bricks to construct irregular objects. They are obtained by taking the topological product of n-graphs of nowhere differentiable real valued functions. Our point of view is to replace the study of a non-differentiable function by the dynamical study of a one-parameter family of smooth regularization of this function. In particular, this allows us to construct a one-parameter family of smooth coordinates systems on non-differentiable deformations of ℝn, which depend on the smoothing parameter via an explicit differential equation called a scale law. Deformations of ℝn are examples of a new class of geometrical objects called scale manifolds which are defined in this paper. As an application, we derive rigorously the main results of the scale-relativity theory developed by Nottale in the framework of a scale space-time manifold.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2089
Author(s):  
Luminita Marin ◽  
Marcel Popa ◽  
Alexandru Anisiei ◽  
Stefan-Andrei Irimiciuc ◽  
Maricel Agop ◽  
...  

The aim of the study was to create a mathematical model useful for monitoring the release of bioactive aldehydes covalently bonded to the chitosan by reversible imine linkage, considered as a polymer–drug system. For this purpose, two hydrogels were prepared by the acid condensation reaction of chitosan with the antifungal 2-formyl-phenyl-boronic acid and their particularities; influencing the release of the antifungal aldehyde by shifting the imination equilibrium to the reagents was considered, i.e., the supramolecular nature of the hydrogels was highlighted by polarized light microscopy, while scanning electron microscopy showed their microporous morphology. Furthermore, the in vitro fungicidal activity was investigated on two fungal strains and the in vitro release curves of the antifungal aldehyde triggered by the pH stimulus were drawn. The theoretical model was developed starting from the hypothesis that the imine-chitosan system, both structurally and functionally, can be assimilated, from a mathematical point of view, with a multifractal object, and its dynamics were analyzed in the framework of the Scale Relativity Theory. Thus, through Riccati-type gauges, two synchronous dynamics, one in the scale space, associated with the fungicidal activity, and the other in the usual space, associated with the antifungal aldehyde release, become operational. Their synchronicity, reducible to the isomorphism of two SL(2R)-type groups, implies, by means of its joint invariant functions, bioactive aldehyde compound release dynamics in the form of “kink–antikink pairs” dynamics of a multifractal type. Finally, the theoretical model was validated through the experimental data.


2007 ◽  
Vol 34 (5) ◽  
pp. 1704-1723 ◽  
Author(s):  
M. Agop ◽  
P. Nica ◽  
P.D. Ioannou ◽  
Olga Malandraki ◽  
I. Gavanas-Pahomi

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 444
Author(s):  
Nicolae Dan Tesloianu ◽  
Lucian Dobreci ◽  
Vlad Ghizdovat ◽  
Andrei Zala ◽  
Adrian Valentin Cotirlet ◽  
...  

By assimilating biological systems, both structural and functional, into multifractal objects, their behavior can be described in the framework of the scale relativity theory, in any of its forms (standard form in Nottale’s sense and/or the form of the multifractal theory of motion). By operating in the context of the multifractal theory of motion, based on multifractalization through non-Markovian stochastic processes, the main results of Nottale’s theory can be generalized (specific momentum conservation laws, both at differentiable and non-differentiable resolution scales, specific momentum conservation law associated with the differentiable–non-differentiable scale transition, etc.). In such a context, all results are explicated through analyzing biological processes, such as acute arterial occlusions as scale transitions. Thus, we show through a biophysical multifractal model that the blocking of the lumen of a healthy artery can happen as a result of the “stopping effect” associated with the differentiable-non-differentiable scale transition. We consider that blood entities move on continuous but non-differentiable (multifractal) curves. We determine the biophysical parameters that characterize the blood flow as a Bingham-type rheological fluid through a normal arterial structure assimilated with a horizontal “pipe” with circular symmetry. Our model has been validated based on experimental clinical data.


1998 ◽  
Vol 538 ◽  
Author(s):  
F. Cleri

AbstractThe validity and predictive capability of continuum models of fracture rests on basic informations whose origin lies at the atomic scale. Examples of such crucial informations are, e.g., the explicit form of the cohesive law in the Barenblatt model and the shear-displacement relation in the Rice-Peierls-Nabarro model. Modem approaches to incorporate atomic-level information into fracture modelling require to increase the size of atomic-scale models up to millions of atoms and more; or to connect directly atomistic and macroscopic, e.g. finite-elements, models; or to pass information from atomistic to continuum models in the form of constitutive relations. A main drawback of the atomistic methods is the complexity of the simulation results, which can be rather difficult to rationalize in the framework of classical, continuum fracture mechanics. We critically discuss the main issues in the atomistic simulation of fracture problems (and dislocations, to some extent); our objective is to indicate how to set up atomistic simulations which represent well-posed problems also from the point of view of continuum mechanics, so as to ease the connection between atomistic information and macroscopic models of fracture.


2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


2007 ◽  
Vol 22 (29) ◽  
pp. 5237-5244 ◽  
Author(s):  
H. T. NIEH

Curvature and torsion are the two tensors characterizing a general Riemannian space–time. In Einstein's general theory of gravitation, with torsion postulated to vanish and the affine connection identified to the Christoffel symbol, only the curvature tensor plays the central role. For such a purely metric geometry, two well-known topological invariants, namely the Euler class and the Pontryagin class, are useful in characterizing the topological properties of the space–time. From a gauge theory point of view, and especially in the presence of spin, torsion naturally comes into play, and the underlying space–time is no longer purely metric. We describe a torsional topological invariant, discovered in 1982, that has now found increasing usefulness in recent developments.


2015 ◽  
Vol 93 (10) ◽  
pp. 1005-1008 ◽  
Author(s):  
Rasulkhozha S. Sharafiddinov

The unity of the structure of matter fields with flavor symmetry laws involves that the left-handed neutrino in the field of emission can be converted into a right-handed one and vice versa. These transitions together with classical solutions of the Dirac equation testify in favor of the unidenticality of masses, energies, and momenta of neutrinos of the different components. If we recognize such a difference in masses, energies, and momenta, accepting its ideas about that the left-handed neutrino and the right-handed antineutrino refer to long-lived leptons, and the right-handed neutrino and the left-handed antineutrino are short-lived fermions, we would follow the mathematical logic of the Dirac equation in the presence of the flavor symmetrical mass, energy, and momentum matrices. From their point of view, nature itself separates Minkowski space into left and right spaces concerning a certain middle dynamical line. Thereby, it characterizes any Dirac particle both by left and by right space–time coordinates. It is not excluded therefore that whatever the main purposes each of earlier experiments about sterile neutrinos, namely, about right-handed short-lived neutrinos may serve as the source of facts confirming the existence of a mirror Minkowski space–time.


Sign in / Sign up

Export Citation Format

Share Document