SEMI-INVARIANT RIEMANNIAN MAPS TO KÄHLER MANIFOLDS
This paper has two aims. First, we show that the usual notion of umbilical maps between Riemannian manifolds does not work for Riemannian maps. Then we introduce a new notion of umbilical Riemannian maps between Riemannian manifolds and give a method on how to construct examples of umbilical Riemannian maps. In the second part, as a generalization of CR-submanifolds, holomorphic submersions, anti-invariant submersions, invariant Riemannian maps and anti-invariant Riemannian maps, we introduce semi-invariant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds, give examples and investigate the geometry of distributions which are arisen from definition. We also obtain a decomposition theorem and give necessary and sufficient conditions for a semi-invariant Riemannian map to be totally geodesic. Then we study the geometry of umbilical semi-invariant Riemannian maps and obtain a classification theorem for such Riemannian maps.