Fractionally charged BPS particles in M-string on 3D orbifolds

Author(s):  
S. Boukaddid ◽  
R. Ahl Laamara ◽  
L. B. Drissi ◽  
E. H. Saidi ◽  
J. Zerouaoui

In this paper, we study the M-string realization of chiral [Formula: see text]-super-conformal field theory in 6 dimensions and its orbifold compactification down to three-dimensional (3D). We analyze its fractionally charged BPS particle spectrum in connection with effective 3D Chern–Simons gauge theory and the supersymmetric fractional quantum Hall effect in [Formula: see text] dimensions. We construct the set of underlying fractionally charged BPS particles in the ground state of the compactified M string and find that it contains 144 BPS states that are generated by four basic quasi-particles (two bosonic-like and two fermionic like) and their CPT conjugate. Two representations of the gauge bosons and the gauginos as condensates of the basic quasiparticles are found and explicit realizations are also given. Other features concerning generalizations are also discussed.

2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2018 ◽  
Vol 33 (02) ◽  
pp. 1850013 ◽  
Author(s):  
Nicola Maggiore

A single-sided boundary is introduced in the three-dimensional Chern–Simons model. It is shown that only one boundary condition for the gauge fields is possible, which plays the twofold role of chirality condition and bosonization rule for the two-dimensional Weyl fermion describing the degrees of freedom of the edge states of the Fractional Quantum Hall Effect. The symmetry on the boundary is derived, which determines the effective two-dimensional action, whose equation of motion coincides with the continuity equation of the Tomonaga–Luttinger theory. The role of Lorentz symmetry and of discrete symmetries on the boundary is also discussed.


2007 ◽  
Vol 21 (08n09) ◽  
pp. 1372-1378 ◽  
Author(s):  
N. E. BONESTEEL ◽  
L. HORMOZI ◽  
G. ZIKOS ◽  
S. H. SIMON

In topological quantum computation quantum information is stored in exotic states of matter which are intrinsically protected from decoherence, and quantum operations are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum operations depend only on the topology of the braids formed by these world-lines. We describe recent work showing how to find braids which can be used to perform arbitrary quantum computations using a specific kind of quasiparticle (those described by the so-called Fibonacci anyon model) which are thought to exist in the experimentally observed ν = 12/5 fractional quantum Hall state.


1993 ◽  
Vol 07 (14) ◽  
pp. 2655-2665 ◽  
Author(s):  
DINGPING LI

One kind of hierarchical wave functions of Fractional Quantum Hall Effect on the torus is constructed. We find that the wave functions are closely related to the wave functions of generalized Abelian Chern-Simons theory.


2006 ◽  
Vol 15 (07) ◽  
pp. 883-912 ◽  
Author(s):  
ALBERTO BESANA ◽  
MAURO SPERA

The present article delves into some symplectic features arising in basic knot theory. An interpretation of the writhing number of a knot (with reference to a plane projection thereof) is provided in terms of a phase function analogous to those encountered in geometrical optics, its variation upon switching a crossing being akin to the passage through a caustic, yielding a knot theoretical analogue of Maslov's theory, via classical fluidodynamical helicity. The Maslov cycle is given by knots having exactly one double point, among those having a fixed plane shadow and lying on a semi-cone issued therefrom, which turn out to build up a Lagrangian submanifold of Brylinski's symplectic manifold of (mildly) singular knots. A Morse family (generating function) for this submanifold is determined and can be taken to be the Abelian Chern–Simons action plus a source term (knot insertion) appearing in the Jones–Witten theory. The relevance of the Bohr–Sommerfeld conditions arising in geometric quantization are investigated and a relationship with the Gauss linking number integral formula is also established, together with a novel derivation of the so-called Feynman–Onsager quantization condition. Furthermore, an additional Chern–Simons interpretation of the writhe of a braid is discussed and interpreted symplectically, also making contact with the Goldin–Menikoff–Sharp approach to vortices and anyons. Finally, a geometrical setting for the ground state wave functions arising in the theory of the Fractional Quantum Hall Effect is established.


2011 ◽  
Vol 08 (07) ◽  
pp. 1507-1518 ◽  
Author(s):  
A. BELHAJ ◽  
N.-E. FAHSSI ◽  
E. H. SAIDI ◽  
A. SEGUI

We engineer U(1)n Chern–Simons type theories describing fractional quantum Hall solitons (QHS) in 1 + 2 dimensions from M-theory compactified on eight-dimensional hyper-Kähler manifolds as target space of N = 4 sigma model. Based on M-theory/type IIA duality, the systems can be modeled by considering D6-branes wrapping intersecting Hirzebruch surfaces F0's arranged as ADE Dynkin Diagrams and interacting with higher-dimensional R-R gauge fields. In the case of finite Dynkin quivers, we recover well known values of the filling factor observed experimentally including Laughlin, Haldane and Jain series.


Sign in / Sign up

Export Citation Format

Share Document