On Some Generalized Identities with Derivations on Multilinear Polynomials

2010 ◽  
Vol 17 (02) ◽  
pp. 319-336 ◽  
Author(s):  
Luisa Carini ◽  
Vincenzo De Filippis ◽  
Onofrio Mario Di Vincenzo

Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, Z(R) the center of R, f(x1,…,xn) a non-central multilinear polynomial over K, d and δ derivations of R, a and b fixed elements of R. Denote by f(R) the set of all evaluations of the polynomial f(x1,…,xn) in R. If a[d(u),u] + [δ (u),u]b = 0 for any u ∈ f(R), we prove that one of the following holds: (i) d = δ = 0; (ii) d = 0 and b = 0; (iii) δ = 0 and a = 0; (iv) a, b ∈ Z(R) and ad + bδ = 0. We also examine some consequences of this result related to generalized derivations and we prove that if d is a derivation of R and g a generalized derivation of R such that g([d(u),u]) = 0 for any u ∈ f(R), then either g = 0 or d = 0.

2006 ◽  
Vol 13 (03) ◽  
pp. 405-410 ◽  
Author(s):  
Yu Wang

Let R be a prime algebra over a commutative ring K, Z and C the center and extended centroid of R, respectively, g a generalized derivation of R, and f (X1, …,Xt) a multilinear polynomial over K. If g(f (X1, …,Xt))n ∈ Z for all x1, …, xt ∈ R, then either there exists an element λ ∈ C such that g(x)= λx for all x ∈ R or f(x1, …,xt) is central-valued on R except when R satisfies s4, the standard identity in four variables.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
V. De Filippis ◽  
G. Scudo ◽  
L. Sorrenti

Let R be a prime ring of characteristic different from 2, with extended centroid C, U its two-sided Utumi quotient ring, F a nonzero generalized derivation of R, f(x1,…,xn) a noncentral multilinear polynomial over C in n noncommuting variables, and a,b∈R such that a[F(f(r1,…,rn)),f(r1,…,rn)]b=0 for any r1,…,rn∈R. Then one of the following holds: (1) a=0; (2) b=0; (3) there exists λ∈C such that F(x)=λx, for all x∈R; (4) there exist q∈U and λ∈C such that F(x)=(q+λ)x+xq, for all x∈R, and f(x1,…,xn)2 is central valued on R; (5) there exist q∈U and λ,μ∈C such that F(x)=(q+λ)x+xq, for all x∈R, and aq=μa, qb=μb.


2011 ◽  
Vol 18 (spec01) ◽  
pp. 955-964 ◽  
Author(s):  
Nurcan Argaç ◽  
Vincenzo De Filippis

Let K be a commutative ring with unity, R a non-commutative prime K-algebra with center Z(R), U the Utumi quotient ring of R, C=Z(U) the extended centroid of R, I a non-zero two-sided ideal of R, H and G non-zero generalized derivations of R. Suppose that f(x1,…,xn) is a non-central multilinear polynomial over K such that H(f(X))f(X)-f(X)G(f(X))=0 for all X=(x1,…,xn)∈ In. Then one of the following holds: (1) There exists a ∈ U such that H(x)=xa and G(x)=ax for all x ∈ R. (2) f(x1,…,xn)2 is central valued on R and there exist a, b ∈ U such that H(x)=ax+xb and G(x)=bx+xa for all x ∈ R. (3) char (R)=2 and R satisfies s4, the standard identity of degree 4.


Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6251-6266
Author(s):  
S.K. Tiwari ◽  
B. Prajapati

Let R be a prime ring of characteristic different from 2 and F a b-generalized derivation on R. Let U be Utumi quotient ring of R with extended centroid C and f (x1,..., xn) be a multilinear polynomial over C which is not central valued on R. Suppose that d is a non zero derivation on R such that d([F(f(r)), f(r)]) ? C for all r = (r1,..., rn) ? Rn, then one of the following holds: (1) there exist a ? U, ? ? C such that F(x) = ax + ?x + xa for all x ? R and f (x1,..., xn)2 is central valued on R, (2) there exists ? ? C such that F(x) = ?x for all x ? R.


2011 ◽  
Vol 18 (spec01) ◽  
pp. 987-998 ◽  
Author(s):  
Ç. Demir ◽  
N. Argaç

Let K be a commutative ring with unit, R be a prime K-algebra with center Z(R), right Utumi quotient ring U and extended centroid C, and I a nonzero right ideal of R. Let g be a nonzero generalized derivation of R and f(X1,…,Xn) a multilinear polynomial over K. If g(f(x1,…,xn)) f(x1,…,xn) ∈ C for all x1,…,xn ∈ I, then either f(x1,…,xn)xn+1 is an identity for I, or char (R)=2 and R satisfies the standard identity s4(x1,…,x4), unless when g(x)=ax+[x,b] for suitable a, b ∈ U and one of the following holds: (i) a, b ∈ C and f(x1,…,xn)2 is central valued on R; (ii) a ∈ C and f(x1,…,xn) is central valued on R; (iii) aI=0 and [f(x1,…,xn), xn+1]xn+2 is an identity for I; (iv) aI=0 and (b-β)I=0 for some β ∈ C.


2013 ◽  
Vol 20 (04) ◽  
pp. 613-622
Author(s):  
Yiqiu Du ◽  
Yu Wang

Let R be a prime ring of characteristic different from 2 with right Utumi quotient ring U and extended centroid C. Let g be a generalized derivation of R, f(x1,…,xn) a multilinear polynomial over C, a ∈ R, and I a nonzero right ideal of R. Suppose that a[g(f(r1,…,rn)), f(r1,…,rn)]=0 for all ri∈ I and aI ≠ 0. Then either g(x)=a1x with (a1-γ)I=0 for some a1∈ U and γ ∈ C, or there exists an idempotent element e ∈ soc (RC) such that IC=eRC and one of the following holds: (i) f(x1,…,xn) is central-valued in eRe; (ii) g(x)=bx+xc, where b, c ∈ U with (c-b-α)e=0 for some α ∈ C and f(x1,…,xn) is central-valued in eRe.


2018 ◽  
Vol 25 (04) ◽  
pp. 681-700
Author(s):  
Basudeb Dhara ◽  
Vincenzo De Filippis

Let R be a prime ring of characteristic different from 2, Q be its maximal right ring of quotients, and C be its extended centroid. Suppose that [Formula: see text] is a non-central multilinear polynomial over C, [Formula: see text], and F, G are two b-generalized derivations of R. In this paper we describe all possible forms of F and G in the case [Formula: see text] for all [Formula: see text] in Rn.


2004 ◽  
Vol 76 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Vincenzo De Filippis ◽  
Onofrio Mario Di Vincenzo

AbstractLet K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d and δ non-zero derivations of R, f (x1,…, xn) a multilinear polynomial over K.Ifthen f(x1,…,xnis central-valued on R.


2009 ◽  
Vol 80 (2) ◽  
pp. 217-232 ◽  
Author(s):  
VINCENZO DE FILIPPIS

AbstractLet R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, I a nonzero right ideal of R. Let f(x1,…,xn) be a noncentral multilinear polynomial over C, m≥1 a fixed integer, a a fixed element of R, g a generalized derivation of R. If ag(f(r1,…,rn))m=0 for all r1,…,rn∈I, then one of the following holds: (1)aI=ag(I)=(0);(2)g(x)=qx, for some q∈U and aqI=0;(3)[f(x1,…,xn),xn+1]xn+2 is an identity for I;(4)g(x)=cx+[q,x] for all x∈R, where c,q∈U such that cI=0 and [q,I]I=0.


2017 ◽  
Vol 60 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Münevver Pınar Eroglu ◽  
Nurcan Argaç

AbstractLet R be a prime ring with extended centroid C, Q maximal right ring of quotients of R, RC central closure of R such that dim C(RC) > , ƒ (X1, . . . , Xn) a multilinear polynomial over C that is not central-valued on R, and f (R) the set of all evaluations of the multilinear polynomial f (X1 , . . . , Xn) in R. Suppose that G is a nonzero generalized derivation of R such that G2(u)u ∈ C for all u ∈ ƒ(R).


Sign in / Sign up

Export Citation Format

Share Document