A COMPARATIVE STUDY OF TWO SWEDISH LCA-BASED TOOLS FOR PRACTICAL ENVIRONMENTAL EVALUATION OF BUILDINGS

2007 ◽  
Vol 09 (03) ◽  
pp. 319-339 ◽  
Author(s):  
KAROLINA BRICK ◽  
BJÖRN FROSTELL

In Sweden, two LCA-based tools for the built environment have been developed the last years: the "Environmental Load Profile" and "EcoEffect". Both are standing in front of an implementation phase and it is therefore important that they may deliver credible and consistent results to end users and facilitate a transition to more environmentally benign building construction and administration. The present study looked at the differences in results that may appear when using the tools and where they come from. Applying the two tools for assessment of a new building on equal basis created differences in results. However, both tools pointed at energy use in the administration phase of the life cycle being the most significant factor for environmental impact, consistent with other studies. The results indicate that: (i) differences in material grouping and life expectancy for the construction materials used, (ii) differences in LCI-data used and (iii) different classification and characterisation models used, give rise to important differences.

2018 ◽  
Vol 10 (12) ◽  
pp. 4688
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković ◽  
Goran Ćirović ◽  
Dragan Pamučar

Research was conducted to indicate the impact of the increased flow of thermal insulation materials on the environment due to the implementation of the new regulations on energy efficiency of buildings. The regulations on energy efficiency of buildings in Serbia came into force on 30 September 2012 for all new buildings as well as for buildings in the process of rehabilitation and reconstruction. For that purpose, the carbon footprint was analyzed in three scenarios (BS, S1 and S2) for which the quantities of construction materials and processes were calculated. The life cycle analysis (LCA), which is the basis for analyzing the carbon life cycle (LCACO2), was used in this study. Carbon Calculator was used for measuring carbon footprint, and URSA program to calculate the operational energy. This study was done in two phases. In Phase 1, the embodied carbon was measured to evaluate short-term effects of the implementation of the new regulations. Phase 2 included the first 10 years of building exploitation to evaluate the long-term effects of the new regulations. The analysis was done for the period of 10 years, further adjustments to the regulations regarding energy efficiency of the buildings in Serbia are expected in accordance with EU directives. The study shows that, in the short-run, Scenario BS has the lowest embodied carbon. In the long-run, after 3.66 years, Scenario S2 becomes a better option regarding the impact on the environment. The study reveals the necessity to include embodied carbon together with the whole life carbon to estimation the impact of a building on the environment.


Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2021 ◽  
Vol 13 (7) ◽  
pp. 3608
Author(s):  
Yohei Endo ◽  
Hideki Takamura

The present paper discusses the applications of life-cycle assessment (LCA) to construction works in Japan. LCA has been frequently used to assess the environmental impacts of new construction. Nonetheless, the applications of LCA to restoration have not been fully confirmed to date. It is said that historical buildings may contribute to sustainable development. Nonetheless, as for heritage buildings, since the protection of cultural value is usually prioritised, their environmental impacts may not be sufficiently explored. To this aim, this paper evaluated the environmental impacts of the restoration of heritage buildings. This paper consisted of two tasks. First, the restoration projects of heritage buildings in Japan were introduced. The restoration of two heritage houses was discussed, referring to heritage protection legislation in Japan. Second, LCA was performed on the restoration of heritage houses and the construction of contemporary houses. Environmental impacts were compared between the restoration and new construction with regard to greenhouse gas emissions and operational energy use. A focus was given to the amount of materials used. Restoration consumes a limited amount of materials compared to new construction, although the energy use of heritage buildings is considerable. The environmental impacts of restoration were quantified so that they were compared with those of new construction. The comparison indicated issues applying LCA to heritage buildings.


2019 ◽  
Vol 43 (5) ◽  
pp. 428-455 ◽  
Author(s):  
Dileep Kumar ◽  
Patrick X.W. Zou ◽  
Rizwan Ahmed Memon ◽  
MD Morshed Alam ◽  
Jay G Sanjayan ◽  
...  

Heat transfer through building opaque envelope is responsible for approximately half of the total heat loss and gain to and from the surroundings. Therefore, insulation materials are commonly used in the building envelope to reduce the heat transfer. Recently, lightweight wall materials with lower thermal conductivity are used in construction along with the commonly used materials such as heavy concrete and earthen materials. In this perspective, there is a need to understand the optimum insulation thickness for different types of building construction materials to minimize unnecessary usage of insulation materials. This study investigated the optimum insulation thickness for different construction materials following a life-cycle approach, where an analytical optimization methodology based on the degree-days method and life-cycle cost analysis was used. In total, 4 insulation materials and 15 building construction materials were considered in the optimization study. The objective function was to minimize life-cycle cost corresponding to the decision variables including insulation thickness and the thermal conductivity of insulation and wall materials. The results showed that the use of insulation in lightweight wall materials is not economically feasible because of their negligible cost-saving potential (below US$2.5/m2-year). However, the walls with heavy concrete and earthen materials that have high thermal mass must be insulated due to their highest cost-saving potential (US$14–26.39/m2-year).


2013 ◽  
Vol 8 (1) ◽  
pp. 120-135 ◽  
Author(s):  
Joseph M. Danatzko ◽  
Halil Sezen ◽  
Qian Chen

The engineering community has been striving to design more sustainable buildings in an attempt to reduce both environmental impact and energy use during all phases of design, construction and operation. Design professionals currently have very limited guidance or tools to incorporate life-cycle and sustainability concepts into their designs. After reviewing the capabilities and limitations of four current life cycle analysis (LCA) computer programs, this research has selected the Athena Impact Estimator v4.0 to perform parametric studies of structural members made up of different construction materials. The energy consumption values are calculated and compared for columns, beams, concrete suspended slabs, precast double-tee sections and various other floor types. While Athena did offer some insights based on its LCA results, this research has concluded that existing LCA and sustainability analysis programs have too few options to meet the current needs of design professionals. A more accurate, sophisticated whole-building LCA tool needs to be developed to assess sustainable properties of design alternatives and to produce the most sustainable structural systems.


Sign in / Sign up

Export Citation Format

Share Document