Characterization of primes dividing the index of a trinomial
2017 ◽
Vol 13
(10)
◽
pp. 2505-2514
◽
Keyword(s):
Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].
2019 ◽
Vol 15
(02)
◽
pp. 353-360
1988 ◽
Vol 53
(2)
◽
pp. 470-480
◽
1981 ◽
Vol 33
(5)
◽
pp. 1074-1084
◽
1994 ◽
Vol 50
(2)
◽
pp. 327-335
1982 ◽
Vol 25
(2)
◽
pp. 222-229
◽
2018 ◽
Vol 33
(2)
◽
pp. 307
2014 ◽
Vol 14
(1)
◽
pp. 1-25
◽
1995 ◽
Vol 45
(3-4)
◽
pp. 195-202
◽