Effect of Transferrin on Cellular Uptake or Expulsion of Titanium Dioxide Nanoparticles

NANO ◽  
2020 ◽  
Vol 15 (09) ◽  
pp. 2050121
Author(s):  
Yanan Huang ◽  
Lin Ding ◽  
Chenjie Yao ◽  
Chenchen Li ◽  
Junfeng Zhang ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in photodynamic therapy (PDT) of cancer treatment as excellent regenerative photocatalysts. However, there are some challenges because of their poor dispersity. Transferrin (Tf) was tried to modify the surface of TiO2 NPs to reduce the aggregation, which further affected uptake and excretion on SMMC-7721 human liver cancer cells. Initially, TiO2 NPs modified with Tf (TiO2-Tf NPs) entered into the cells faster than the pure TiO2 NPs which remain attaching on the cell membrane after short-term co-incubation. Tf modification increased the rate and amount of cellular endocytosis. Both TiO2 NPs and TiO2-Tf NPs were observed in lysosomes after long-term co-incubation through clathrin-mediated endocytosis pathway. Expulsion of NPs was then observed and it was found that the exocytosis of TiO2-Tf NPs was fast in the first 24 h, and then slowed down gradually from 24 h to 144 h. Totally, existence of Tf decreased the exocytosis of TiO2 NPs. Furthermore, the differences of cytotoxicity and genotoxicity between TiO2 NPs and TiO2-Tf NPs show that surface-adsorbed Tf components provide some protection from the cytotoxic effect by reducing the production of intracellular ROS. TiO2-Tf NPs obviously affected cell cycle, indicating a significant G2/M phase cell cycle arrest. Our results offer a promising application of easily aggregated TiO2 NPs in the nanomedicine field.

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 501
Author(s):  
So Hyun Park ◽  
Ji-Young Hong ◽  
Hyen Joo Park ◽  
Sang Kook Lee

Oxypeucedanin (OPD), a furocoumarin compound from Angelica dahurica (Umbelliferae), exhibits potential antiproliferative activities in human cancer cells. However, the underlying molecular mechanisms of OPD as an anticancer agent in human hepatocellular cancer cells have not been fully elucidated. Therefore, the present study investigated the antiproliferative effect of OPD in SK-Hep-1 human hepatoma cells. OPD effectively inhibited the growth of SK-Hep-1 cells. Flow cytometric analysis revealed that OPD was able to induce G2/M phase cell cycle arrest in cells. The G2/M phase cell cycle arrest by OPD was associated with the downregulation of the checkpoint proteins cyclin B1, cyclin E, cdc2, and cdc25c, and the up-regulation of p-chk1 (Ser345) expression. The growth-inhibitory activity of OPD against hepatoma cells was found to be p53-dependent. The p53-expressing cells (SK-Hep-1 and HepG2) were sensitive, but p53-null cells (Hep3B) were insensitive to the antiproliferative activity of OPD. OPD also activated the expression of p53, and thus leading to the induction of MDM2 and p21, which indicates that the antiproliferative activity of OPD is in part correlated with the modulation of p53 in cancer cells. In addition, the combination of OPD with gemcitabine showed synergistic growth-inhibitory activity in SK-Hep-1 cells. These findings suggest that the anti-proliferative activity of OPD may be highly associated with the induction of G2/M phase cell cycle arrest and upregulation of the p53/MDM2/p21 axis in SK-HEP-1 hepatoma cells.


2022 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Palanivel Naveen ◽  
Kaviyarasu Adhigaman ◽  
...  

A progression of new N-(3'-acetyl-8-nitro-2,3-dihydro-1H,3'H-spiro[quinoline-4,2'-[1,3,4]thiadiazol]-5'-yl) acetamide derivatives were synthesized from potent 8-nitro quinoline-thiosemicarbazones. The synthesized compounds were characterized by different spectroscopic studies and single X-ray crystallographic studies. The compounds were...


2021 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Adhigaman Kaviyarasu ◽  
Sundarasamy Amsaveni ◽  
...  

Abstract A progression of novel thiadiazoline spiro quinoline derivatives were synthesized from potent thiadiazoline spiro quinoline derivatives . The synthesized compounds portrayed by different spectroscopic studies and single X-ray crystallographic studies. The compounds were assessed for in vitro anticancer properties towards MCF-7 and HeLa cells. The compounds showed superior inhibition action MCF-7 malignant growth cells. Amongst, the compound 4a showed significant inhibition activity, the cell death mechanism was evaluated by fluorescent staining, and flow cytometry, RT-PCR, and western blot analyses. The in vitro anticancer results revealed that the compound 4a induced apoptosis by inhibition of estrogen receptor alpha (ERα) and G2/M phase cell cycle arrest. The binding affinity of the compounds with ERα and pharmacokinetic properties were confirmed by molecular docking studies.


2020 ◽  
Vol 97 ◽  
pp. 103709 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Arjunan Saravanan ◽  
Thangaraj Arasakumar ◽  
Thangaraj Suresh ◽  
...  

2020 ◽  
Vol 27 (1) ◽  
pp. 107327481989797
Author(s):  
Kun-Ming Wu ◽  
Chih-Wen Chi ◽  
Jerry Cheng-Yen Lai ◽  
Yu-Jen Chen ◽  
Yu Ru Kou

TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 μM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase–related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.


2004 ◽  
Vol 134 (11) ◽  
pp. 3121-3126 ◽  
Author(s):  
James M. Visanji ◽  
Susan J. Duthie ◽  
Lynn Pirie ◽  
David G. Thompson ◽  
Philip J. Padfield

Molecules ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 472 ◽  
Author(s):  
Jing-Ru Weng ◽  
Li-Yuan Bai ◽  
Wei-Yu Lin ◽  
Chang-Fang Chiu ◽  
Yu-Chang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document