Three-Dimensional Numerical Study on the Interaction Between Dam-Break Wave and Cylinder Array

2018 ◽  
Vol 12 (02) ◽  
pp. 1840007 ◽  
Author(s):  
Tso-Ren Wu ◽  
Thi-Hong-Nhi Vuong ◽  
Jun-Wei Lin ◽  
Chia-Ren Chu ◽  
Chung-Yue Wang

Energy dissipation mechamism is the key to study tsunami hazard mitigation. Numerical method is adopted to study the interaction between bores and square cylinders. The model solves the three-dimensional Navier–Stokes equations with Large-Eddy Simulation turbulence model. The Volume-of-fluid (VOF) method is used to track the complex free surface. We focus the investigation on the effect of cylinder height on the flow field. The results show that the turbulence diffusion is the main mechanism for energy dissipation. The flow patterns are significantly different within and beyond the cylinder array. The taller cylinders cause smaller velocity magnitude in the downstream area. In addition, a larger value of velocity magnitude and vorticity near the bottom is identified in the tall-cylinder case. These unique featuers make different dissipation rates.

2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Author(s):  
Y H Yau ◽  
A Badarudin ◽  
P A Rubini

This article describes a systematic approach in building a flow solver for large eddy simulation (LES). Finite volume discretizations of the filtered, incompressible, Navier–Stokes equations were explained. The theory progresses to the description of the step-by-step process (mainly in increasing functionality or capability) in developing a three-dimensional, unstructured Cartesian mesh, parallel code after evaluating numerical factors, and available options carried out earlier. This was followed by a presentation of results produced from the simulations of laminar flow, related to the validation of the source codes, which indicates that the flow solver is behaving satisfactorily.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1235 ◽  
Author(s):  
Chaolong Li ◽  
Zhixun Xia ◽  
Likun Ma ◽  
Xiang Zhao ◽  
Binbin Chen

Scramjet based on solid propellant is a good supplement for the power device of future hypersonic vehicles. A new scramjet combustor configuration using solid fuel, namely, the solid fuel rocket scramjet (SFRSCRJ) combustor is proposed. The numerical study was conducted to simulate a flight environment of Mach 6 at a 25 km altitude. Three-dimensional Reynolds-averaged Navier–Stokes equations coupled with shear stress transport (SST) k − ω turbulence model are used to analyze the effects of the cavity and its position on the combustor. The feasibility of the SFRSCRJ combustor with cavity is demonstrated based on the validation of the numerical method. Results show that the scramjet combustor configuration with a backward-facing step can resist high pressure generated by the combustion in the supersonic combustor. The total combustion efficiency of the SFRSCRJ combustor mainly depends on the combustion of particles in the fuel-rich gas. A proper combustion organization can promote particle combustion and improve the total combustion efficiency. Among the four configurations considered, the combustion efficiency of the mid-cavity configuration is the highest, up to about 70%. Therefore, the cavity can effectively increase the combustion efficiency of the SFRSCRJ combustor.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


2019 ◽  
Vol 7 (10) ◽  
pp. 337 ◽  
Author(s):  
Francesco Gallerano ◽  
Giovanni Cannata ◽  
Federica Palleschi

A three-dimensional numerical study of the hydrodynamic effect produced by a system of submerged breakwaters in a coastal area with a curvilinear shoreline is proposed. The three-dimensional model is based on an integral contravariant formulation of the Navier-Stokes equations in a time-dependent curvilinear coordinate system. The integral form of the contravariant Navier-Stokes equations is numerically integrated by a finite-volume shock-capturing scheme which uses Monotonic Upwind Scheme for Conservation Laws Total Variation Diminishing (MUSCL-TVD) reconstructions and an Harten Lax van Leer Riemann solver (HLL Riemann solver). The numerical model is used to verify whether the presence of a submerged coastal defence structure, in the coastal area with a curvilinear shoreline, is able to modify the wave induced circulation pattern and the hydrodynamic conditions from erosive to accretive.


2015 ◽  
Vol 772 ◽  
pp. 552-555 ◽  
Author(s):  
Kyu Han Kim ◽  
Joni Cahyono

The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. In the present study, the numerical solution of the discredited three-dimensional, incompressible Navier-Stokes equations over an unstructured grid is accomplished with an ANSYS program. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The results trends are similar between the highest pressure distributions at the impeller also produced highest power outputs on 6 numbers of blades at impeller. The model has been validated, comparing numerical results with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document