Human Immunodeficiency Virus (HIV) infection model based on triangular neutrosophic cubic hesitant fuzzy number

2019 ◽  
Vol 12 (05) ◽  
pp. 1950055 ◽  
Author(s):  
Fazli Amin ◽  
Aliya Fahmi

In this paper, we define the basic concept of triangular neutrosophic cubic hesitant fuzzy number and their properties. We develop a triangular neutrosophic cubic hesitant fuzzy ordered weighted arithmetic averaging (TNCHFOWAA) operator and a triangular neutrosophic cubic hesitant fuzzy ordered weighted geometric averaging (TNCHFOWGA) operator to aggregate triangular neutrosophic cubic hesitant fuzzy number (TNCHFN) information and investigate their properties. Furthermore, a multiple attribute decision-making method based on the TNCHFOWAA operator and triangular neutrosophic cubic hesitant fuzzy ordered weighted geometric (TNCHFOWG) operator and the score function of TNCHFN is established under a TNCHFN environment. Finally, an illustrative example of investment alternatives is given to demonstrate the application and effectiveness of the developed approach.

Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 135 ◽  
Author(s):  
Jun Ye ◽  
Wenhua Cui

Linguistic decision making (DM) is an important research topic in DM theory and methods since using linguistic terms for the assessment of the objective world is very fitting for human thinking and expressing habits. However, there is both uncertainty and hesitancy in linguistic arguments in human thinking and judgments of an evaluated object. Nonetheless, the hybrid information regarding both uncertain linguistic arguments and hesitant linguistic arguments cannot be expressed through the various existing linguistic concepts. To reasonably express it, this study presents a linguistic cubic hesitant variable (LCHV) based on the concepts of a linguistic cubic variable and a hesitant fuzzy set, its operational relations, and its linguistic score function for ranking LCHVs. Then, the objective extension method based on the least common multiple number/cardinality for LCHVs and the weighted aggregation operators of LCHVs are proposed to reasonably aggregate LCHV information because existing aggregation operators cannot aggregate LCHVs in which the number of their hesitant components may imply difference. Next, a multi-attribute decision-making (MADM) approach is proposed based on the weighted arithmetic averaging (WAA) and weighted geometric averaging (WGA) operators of LCHVs. Lastly, an illustrative example is provided to indicate the applicability of the proposed approaches.


2014 ◽  
Vol 15 (2) ◽  
pp. 277-298 ◽  
Author(s):  
Guiwu Wei ◽  
Rui Lin ◽  
Xiaofei Zhao ◽  
Hongjun Wang

In this paper, we investigate the multiple attribute decision making problems with fuzzy number intuitionistic fuzzy information. Firstly, some operational laws of fuzzy number intuitionistic fuzzy values, score function and accuracy function of fuzzy number intuitionistic fuzzy values are introduced. Then, we have developed two fuzzy number intuitionistic fuzzy Choquet integral aggregation operators: induced fuzzy number intuitionistic fuzzy choquet ordered averaging (IFNIFCOA) operator and induced fuzzy number intuitionistic fuzzy choquet ordered geometric (IFNIFCOG) operator. The prominent characteristic of the operators is that they can not only consider the importance of the elements or their ordered positions, but also reflect the correlation among the elements or their ordered positions. We have studied some desirable properties of the IFNIFCOA and IFNIFCOG operators, such as commutativity, idempotency and monotonicity, and applied the IFNIFCOA and IFNIFCOGM operators to multiple attribute decision making with fuzzy number intuitionistic fuzzy information. Finally an illustrative example has been given to show the developed method.


Information ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 201 ◽  
Author(s):  
Jiongmei Mo ◽  
Han-Liang Huang

For multiple attribute decision making, ranking and information aggregation problems are increasingly receiving attention. In a normal neutrosophic number, the ranking method does not satisfy the ranking principle. Moreover, the proposed operators do not take into account the correlation between any aggregation arguments. In order to overcome the deficiencies of the existing ranking method, based on the nonnegative normal neutrosophic number, this paper redefines the score function, the accuracy function, and partial operational laws. Considering the correlation between any aggregation arguments, the dual generalized nonnegative normal neutrosophic weighted Bonferroni mean operator and dual generalized nonnegative normal neutrosophic weighted geometric Bonferroni mean operator were investigated, and their properties are presented. Here, these two operators are applied to deal with a multiple attribute decision making problem. Example results show that the proposed method is effective and superior.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Harish Garg ◽  
Rishu Arora

The objective of this paper is to present novel algorithms for solving the multiple attribute decision-making problems under the possibility intuitionistic fuzzy soft set (PIFSS) information. The prominent characteristics of the PIFSS are that it considers the membership and nonmembership degrees of each object during evaluation and their corresponding possibility degree. Keeping these features, this paper presents some new operation laws, score function, and comparison laws between the pairs of the PIFSSs. Further, we define COmplex PRoportional ASsessment (COPRAS) and weighted averaging and geometric aggregation operators to aggregate the PIFSS information into a single one. Later, we develop two algorithms based on COPRAS and aggregation operators to solve decision-making problems. In these approaches, the experts and the weights of the parameters are determined with the help of entropy and the distance measure to remove the ambiguity in the information. Finally, a numerical example is given to demonstrate the presented approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhili Huang ◽  
Qinglan Chen ◽  
Liu Chen ◽  
Qinyuan Liu

This paper is concerned with the uncertain multiattribute decision-making (UMADM) of which the attribute value is triangular fuzzy number. Firstly, the max-relative similarity degree and min-relative similarity degree of alternative decision-making objects are given based on the relative similarity degree of triangular fuzzy number, the advantage relation theories to comparative relative similarity degree of triangular fuzzy number are proposed, and some good properties, relations, and conclusions are derived. Secondly, in order to determine the attribute weight vector, a triangular fuzzy number-based decision-making object relative similarity programming model is established with the help of maximizing possibility degree algorithm rules in the cooperative game theory. Subsequently, by aggregating the comparison overall relative similarity degree values of all decision-making objects, we could pick over and sort the set of alternative objects and gather a new model algorithm for the relative similarity programming of triangular fuzzy number-based multiple attribute decision-making alternatives. Finally, an example is given to illustrate the feasibility and practicability of the model algorithm presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document