scholarly journals ON VARIETIES OF RINGS WHOSE FINITE RINGS ARE DETERMINED BY THEIR ZERO-DIVISOR GRAPHS

2012 ◽  
Vol 05 (02) ◽  
pp. 1250019 ◽  
Author(s):  
A. S. Kuzmina ◽  
Yu. N. Maltsev

The zero-divisor graph Γ(R) of an associative ring R is the graph whose vertices are all nonzero zero-divisors (one-sided and two-sided) of R, and two distinct vertices x and y are joined by an edge if and only if either xy = 0 or yx = 0. In the present paper, we study some properties of ring varieties where every finite ring is uniquely determined by its zero-divisor graph.

2012 ◽  
Vol 11 (03) ◽  
pp. 1250055 ◽  
Author(s):  
A. S. KUZMINA

The zero-divisor graph Γ(R) of an associative ring R is the graph whose vertices are all non-zero (one-sided and two-sided) zero-divisors of R, and two distinct vertices x and y are joined by an edge if and only if xy = 0 or yx = 0. [S. P. Redmond, The zero-divisor graph of a noncommutative ring, Int. J. Commut. Rings1(4) (2002) 203–211.] In the present paper, all finite rings with Eulerian zero-divisor graphs are described.


2008 ◽  
Vol 01 (04) ◽  
pp. 565-574 ◽  
Author(s):  
A. S. KUZ'MINA ◽  
Yu. N. MALTSEV

The zero-divisor graph Γ(R) of an associative ring R is the graph with all vertices non-zero zero-divisors (one-sided and two-sided) of R, and two distinct vertices x and y are joined by an edge iff xy = 0 or yx = 0 ([10]). In the present paper, we describe all nilpotent finite rings with planar zero-divisor graphs.


2020 ◽  
Vol 83 (1) ◽  
pp. 127-132
Author(s):  
Nurhidayah Zaid ◽  
Nor Haniza Sarmin ◽  
Sanhan Muhammad Salih Khasraw

Let R be a finite ring. The zero divisors of R are defined as two nonzero elements of R, say x and y where xy = 0. Meanwhile, the probability that two random elements in a group commute is called the commutativity degree of the group. Some generalizations of this concept have been done on various groups, but not in rings. In this study, a variant of probability in rings which is the probability that two elements of a finite ring have product zero is determined for some ring of matrices over integers modulo n. The results are then applied into graph theory, specifically the zero divisor graph. This graph is defined as a graph where its vertices are zero divisors of R and two distinct vertices x and y are adjacent if and only if xy = 0. It is found that the zero divisor graph of R is a directed graph.


Author(s):  
Husam Q. Mohammad ◽  
Nazar H. Shuker ◽  
Luma A. Khaleel

The rings considered in this paper are finite commutative rings with identity, which are not fields. For any ring [Formula: see text] which is not a field and which is not necessarily finite, we denote the set of all zero-divisors of [Formula: see text] by [Formula: see text] and [Formula: see text] by [Formula: see text]. Let [Formula: see text] denote the zero-divisor graph of [Formula: see text] and for a finite ring [Formula: see text], let [Formula: see text] denote the maximum degree of [Formula: see text]. We denote [Formula: see text] by [Formula: see text]. The aim of this paper is to study some properties of [Formula: see text].


2016 ◽  
Vol 12 (3) ◽  
pp. 6021-6026
Author(s):  
Maurice Oduor ◽  
Walwenda Shadrack Adero

Let R be a Completely Primary Finite Ring with a unique maximal ideal Z(R)), satisfying ((Z(R))n−1 ̸= (0) and (Z(R))n = (0): The structures of the units some classes of such rings have been determined. In this paper, we investigate the structures of the zero divisors of R:


2017 ◽  
Vol 16 (03) ◽  
pp. 1750056 ◽  
Author(s):  
E. Hashemi ◽  
R. Amirjan ◽  
A. Alhevaz

In this paper, we continue to study zero-divisor properties of skew polynomial rings [Formula: see text], where [Formula: see text] is an associative ring equipped with an endomorphism [Formula: see text] and an [Formula: see text]-derivation [Formula: see text]. For an associative ring [Formula: see text], the undirected zero-divisor graph of [Formula: see text] is the graph [Formula: see text] such that the vertices of [Formula: see text] are all the nonzero zero-divisors of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are connected by an edge if and only if [Formula: see text] or [Formula: see text]. As an application of reversible rings, we investigate the interplay between the ring-theoretical properties of a skew polynomial ring [Formula: see text] and the graph-theoretical properties of its zero-divisor graph [Formula: see text]. Our goal in this paper is to give a characterization of the possible diameters of [Formula: see text] in terms of the diameter of [Formula: see text], when the base ring [Formula: see text] is reversible and also have the [Formula: see text]-compatible property. We also completely describe the associative rings all of whose zero-divisor graphs of skew polynomials are complete.


2019 ◽  
Vol 26 (04) ◽  
pp. 665-676
Author(s):  
Ebrahim Hashemi ◽  
Abdollah Alhevaz

Let R be an associative ring with identity and Z*(R) be its set of non-zero zero-divisors. The undirected zero-divisor graph of R, denoted by Γ(R), is the graph whose vertices are the non-zero zero-divisors of R, and where two distinct vertices r and s are adjacent if and only if rs = 0 or sr = 0. The distance between vertices a and b is the length of the shortest path connecting them, and the diameter of the graph, diam(Γ(R)), is the superimum of these distances. In this paper, first we prove some results about Γ(R) of a semi-commutative ring R. Then, for a reversible ring R and a unique product monoid M, we prove 0≤ diam(Γ(R))≤ diam(Γ(R[M]))≤3. We describe all the possibilities for the pair diam(Γ(R)) and diam(Γ(R[M])), strictly in terms of the properties of a ring R, where R is a reversible ring and M is a unique product monoid. Moreover, an example showing the necessity of our assumptions is provided.


1971 ◽  
Vol 5 (2) ◽  
pp. 271-274 ◽  
Author(s):  
C. Christensen

It is well-known that every finite ring with non-zero-divisors has order not exceeding the square of the order n of its left zero-divisor set. Unital rings whose order is precisely n2 have been described already. Here we discuss finite rings with relatively larger zero-divisor sets, namely those of order greater than n3/2. This is achieved by describing the class of all finite rings with left composition length two at most, and using a theorem relating the left composition length of a finite ring to the size of its left zero-divisor set.


Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


2019 ◽  
Vol 19 (08) ◽  
pp. 2050155
Author(s):  
Gaohua Tang ◽  
Guangke Lin ◽  
Yansheng Wu

In this paper, we introduce the concept of the associate class graph of zero-divisors of a commutative ring [Formula: see text], denoted by [Formula: see text]. Some properties of [Formula: see text], including the diameter, the connectivity and the girth are investigated. Utilizing this graph, we present a new class of counterexamples of Beck’s conjecture on the chromatic number of the zero-divisor graph of a commutative ring.


Sign in / Sign up

Export Citation Format

Share Document