Synthesis and characterization of electrically conducting copolymers of poly(aniline-co-o-iodoaniline)

2014 ◽  
Vol 07 (05) ◽  
pp. 1450062 ◽  
Author(s):  
Umesh S. Waware ◽  
Mohd Rashid

Functionalized copolymers of poly(aniline-co-o-iodoaniline) have been synthesized by the chemical oxidative polymerization method by using o-iodoaniline (o-IA) and aniline (AN) as monomer units by changing their molar feed ratio in acid aqueous medium. The physical properties viz; solubility, electrical conductivity have been studied to characterize them. The copolymers possess better solubility than unsubstituted homopolymer in organic solvent such as N -methyl-2-pyrrodinone (NMP). The conductivity of the pressed pellets of as-synthesized copolymers depends upon the content of o-IA in the polyaniline (PANI). The structural confirmation of the copolymer has been explained by Fourier transform infrared spectroscopy study which suggest that AN and o-IA units are uniformly distributed along the polymer chain and thus, the physical properties of copolymers may possibly be tailored by varying the molar feed ratio in copolymerization reactions. The conductivity of the copolymer decreases upon increasing the o-IA content in molar feed, because the introduction of –I- as a functional group reduces the extent of conjugation of the polymer chain.

2011 ◽  
Vol 364 ◽  
pp. 50-54 ◽  
Author(s):  
Afarin Bahrami ◽  
Z.A. Talib ◽  
W. Mahmood Mat Yunus ◽  
Kasra Behzad ◽  
Nayereh Soltani

This study describes the preparation of polypyrrole multiwall carbon nanotube (PPy/MWNT) composites by in situ chemical oxidative polymerization. Various ratios of functionalized MWNTs are dispersed in the water, and PPy are then synthesized via in-situ chemical oxidative polymerization on the surface of the carbon nanotubes. The morphology of the resulting complex nanotubes (MWNT-PPY) was characterized by field-emission scanning electron microscopy (FESEM). The conductivity of each composite showed a maximum in the temperature scale of 120 – 160 °C and then decreased dramatically with the increase of temperature. The resultant PPy/MWNT nanotubes enhanced electrical conductivity and thermal stability of nanocomposite compared to PPy which was strongly influenced by the feed ratio of pyrrole to MWNTs.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2820
Author(s):  
Beatriz Martínez-Sánchez ◽  
Diego Cazorla-Amorós ◽  
Emilia Morallón

Phosphonated polyanilines were synthesized by copolymerization of aniline (ANI) with both 2- and 4-aminophenylphosphonic acids (APPA). The material composition and the final properties of the copolymers can be easily tailored by controlling the monomers ANI/APPA molar feed ratio. An important influence on the reactivity of monomers has been found with the substituent position in the ring, leading to differences in the properties and size of blocks of each monomer in the polymer. As expected, while 2APPA shows more similarities to ANI, 4APPA is much less reactive. Phosphorus loading of ~5 at% was achieved in the poly(aniline-co-2-aminophenylphosphonic acid) (PANI2APPA) with a 50/50 molar feed ratio. All the resulting copolymers were characterized by different techniques. Experimental results and density functional theory (DFT) computational calculations suggest that the presence of phosphonic groups in the polymeric chain gives rise to inter- and intra-chain interactions, as well as important steric effects, which induce a slight twist in the substituted PANI structure. Therefore, the physicochemical, electrical, and electrochemical properties are modified and can be suitably controlled.


2010 ◽  
Vol 4 (4) ◽  
pp. 277-280
Author(s):  
Vasant Chabukswar ◽  
◽  
Sanjay Bhavsar ◽  

Emeraldin salt of polyaniline was synthesized by chemical oxidative polymerization method; this salt is soluble in common organic solvents. The obtained results are discussed with reference to lactic acid doped polyaniline. It has been observed that acrylic acid doped polyaniline is comparatively more soluble than polyaniline doped with lactic acid in common organic solvent such as m-cresol, NMP (N-methyl pyrrolidinone), DMSO, DMF, etc. The acrylic acid doped polymer prepared using lactic acid is comparatively more soluble in m-cresol and NMP than the polyaniline without acrylic acid. UV-Visible spectra for acrylic acid doped polyaniline reveals the coil conformation at higher wavelength along with sharp peak. This indicates that the conductivity of acrylic acid doped polyaniline is higher than that of polyaniline without acrylic acid. A broad and intense band at 3400–3300cm-1 (N–H stretching) and 1120–1225 cm-1 accounts for higher degree of doping and protonation of amine and imine N-atom. These results are well supported by the conductivity measurement – the conductivity of acrylic acid doped polyaniline is higher than in case of polyanіline without acrylic acid.


Sign in / Sign up

Export Citation Format

Share Document