Secure domination subdivision number of a graph

2019 ◽  
Vol 11 (03) ◽  
pp. 1950036
Author(s):  
S. V. Divya Rashmi ◽  
A. Somasundaram ◽  
S. Arumugam

Let [Formula: see text] be a graph of order [Formula: see text] and size [Formula: see text] A dominating set [Formula: see text] of [Formula: see text] is called a secure dominating set if for each [Formula: see text] there exists [Formula: see text] such that [Formula: see text] is adjacent to [Formula: see text] and [Formula: see text] is a dominating set of [Formula: see text] In this case, we say that [Formula: see text] is [Formula: see text]-defended by [Formula: see text] or [Formula: see text] [Formula: see text]-defends [Formula: see text] The secure domination number [Formula: see text] is the minimum cardinality of a secure dominating set of [Formula: see text] The secure domination subdivision number of [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the secure domination number. In this paper, we present several results on this parameter.

Author(s):  
Ammar Babikir ◽  
Magda Dettlaff ◽  
Michael A. Henning ◽  
Magdalena Lemańska

AbstractA set S of vertices in a graph G is a dominating set if every vertex not in S is ad jacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. The independent domination subdivision number $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the independent domination number. We show that for every connected graph G on at least three vertices, the parameter $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is well defined and differs significantly from the well-studied domination subdivision number $$\mathrm{sd_\gamma }(G)$$ sd γ ( G ) . For example, if G is a block graph, then $$\mathrm{sd_\gamma }(G) \le 3$$ sd γ ( G ) ≤ 3 , while $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) can be arbitrary large. Further we show that there exist connected graph G with arbitrarily large maximum degree $$\Delta (G)$$ Δ ( G ) such that $$ \hbox {sd}_{\mathrm{i}}(G) \ge 3 \Delta (G) - 2$$ sd i ( G ) ≥ 3 Δ ( G ) - 2 , in contrast to the known result that $$\mathrm{sd_\gamma }(G) \le 2 \Delta (G) - 1$$ sd γ ( G ) ≤ 2 Δ ( G ) - 1 always holds. Among other results, we present a simple characterization of trees T with $$ \hbox {sd}_{\mathrm{i}}(T) = 1$$ sd i ( T ) = 1 .


Author(s):  
P. Sumathi ◽  
G. Alarmelumangai

Let G = (V,E) be a simple, undirected, finite nontrivial graph. A non empty set DV of vertices in a graph G is a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number (G) is the minimum cardinality of a dominating set of G. A dominating set D is a locating equitable dominating set of G if for any two vertices u,wєV-D, N(u)∩D ≠ N(w)∩D, |N(u)∩D| ≠ |N(w)∩D|. The locating equitable domination number of G is the minimum cardinality of a locating equitable dominating set of G. The locating equitable domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the locating equitable domination number and is denoted by sdγle(G). The independence subdivision number sdβle(G) to equal the minimum number of edges that must be subdivided in order to increase the independence number. In this paper, we establish bounds on sdγle(G) and sdβle(G) for some families of graphs.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2101-2110
Author(s):  
Magda Dettlaff ◽  
Saeed Kosary ◽  
Magdalena Lemańska ◽  
Seyed Sheikholeslami

A set X is weakly convex in G if for any two vertices a,b ? X there exists an ab-geodesic such that all of its vertices belong to X. A set X ? V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number ?wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd?wcon (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the weakly convex domination number. In this paper we initiate the study of weakly convex domination subdivision number and establish upper bounds for it.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1135
Author(s):  
Shouliu Wei ◽  
Guoliang Hao ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Hossein Karami

A paired-dominating set of a graph G without isolated vertices is a dominating set of vertices whose induced subgraph has perfect matching. The minimum cardinality of a paired-dominating set of G is called the paired-domination number γpr(G) of G. The paired-domination subdivision number sdγpr(G) of G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the paired-domination number. Here, we show that, for each tree T≠P5 of order n≥3 and each edge e∉E(T), sdγpr(T)+sdγpr(T+e)≤n+2.


Author(s):  
E. Sampathkumar ◽  
L. Pushpalatha

The study of domination in graphs originated around 1850 with the problems of placing minimum number of queens or other chess pieces on an n x n chess board so as to cover/dominate every square. The rules of chess specify that in one move a queen can advance any number of squares horizontally, vertically, or diagonally as long as there are no other chess pieces in its way. In 1850 enthusiasts who studied the problem came to the correct conclusion that all the squares in an 8 x 8 chessboard can be dominated by five queens and five is the minimum such number. With very few exceptions (Rooks, Bishops), these problems still remain unsolved today. Let G = (V,E) be a graph. A set S ⊂ V is a dominating set of G if every vertex in V–S is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of a dominating set.


2019 ◽  
Vol 13 (04) ◽  
pp. 2050071
Author(s):  
Derya Doğan Durgun ◽  
Berna Lökçü

Let [Formula: see text] be a graph and [Formula: see text] A dominating set [Formula: see text] is a set of vertices such that each vertex of [Formula: see text] is either in [Formula: see text] or has at least one neighbor in [Formula: see text]. The minimum cardinality of such a set is called the domination number of [Formula: see text], [Formula: see text] [Formula: see text] strongly dominates [Formula: see text] and [Formula: see text] weakly dominates [Formula: see text] if (i) [Formula: see text] and (ii) [Formula: see text] A set [Formula: see text] is a strong-dominating set, shortly sd-set, (weak-dominating set, shortly wd-set) of [Formula: see text] if every vertex in [Formula: see text] is strongly (weakly) dominated by at least one vertex in [Formula: see text]. The strong (weak) domination number [Formula: see text] of [Formula: see text] is the minimum cardinality of an sd-set (wd-set). In this paper, we present weak and strong domination numbers of thorn graphs.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document