On the Aα-spectrum of joined union of digraphs

Author(s):  
Hilal A. Ganie

Let [Formula: see text] be a digraph of order [Formula: see text] and let [Formula: see text] be the adjacency matrix of [Formula: see text] Let Deg[Formula: see text] be the diagonal matrix of vertex out-degrees of [Formula: see text] For any real [Formula: see text] the generalized adjacency matrix [Formula: see text] of the digraph [Formula: see text] is defined as [Formula: see text] This matrix generalizes the spectral theories of the adjacency matrix and the signless Laplacian matrix of [Formula: see text]. In this paper, we find [Formula: see text]-spectrum of the joined union of digraphs in terms of spectrum of adjacency matrices of its components and the eigenvalues of an auxiliary matrix determined by the joined union. We determine the [Formula: see text]-spectrum of join of two regular digraphs and the join of a regular digraph with the union of two regular digraphs of distinct degrees. As applications, we obtain the [Formula: see text]-spectrum of various families of unsymmetric digraphs.

2016 ◽  
Vol 5 (2) ◽  
pp. 132
Author(s):  
Essam El Seidy ◽  
Salah Eldin Hussein ◽  
Atef Mohamed

We consider a finite undirected and connected simple graph  with vertex set  and edge set .We calculated the general formulas of the spectra of a cycle graph and path graph. In this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and seidel adjacency matrix.


2018 ◽  
Vol 6 (1) ◽  
pp. 323-342 ◽  
Author(s):  
S. Barik ◽  
D. Kalita ◽  
S. Pati ◽  
G. Sahoo

AbstractLet G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and signless Laplacian matrix of graphs resulting from various graph operations with special emphasis on corona and graph products. In most cases, we have described the eigenvalues of the resulting graphs along with an explicit description of the structure of the corresponding eigenvectors.


2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


2019 ◽  
Vol 25 (3) ◽  
pp. 302-313
Author(s):  
Fatemeh Taghvaee ◽  
Gholam Hossein Fath-Tabar

‎‎Let $G$ be a simple graph with vertex set $V(G)=\{v_1‎, ‎v_2‎, ‎\cdots‎, ‎v_n\}$ ‎and‎‎edge set $E(G)$‎.‎The signless Laplacian matrix of $G$ is the matrix $‎Q‎‎=‎D‎+‎A‎‎$‎, ‎such that $D$ is a diagonal ‎matrix‎%‎‎, ‎indexed by the vertex set of $G$ where‎‎%‎$D_{ii}$ is the degree of the vertex $v_i$ ‎‎‎ and $A$ is the adjacency matrix of $G$‎.‎%‎ where $A_{ij} = 1$ when there‎‎%‎‎is an edge from $i$ to $j$ in $G$ and $A_{ij} = 0$ otherwise‎.‎The eigenvalues of $Q$ is called the signless Laplacian eigenvalues of $G$ and denoted by $q_1$‎, ‎$q_2$‎, ‎$\cdots$‎, ‎$q_n$ in a graph with $n$ vertices‎.‎In this paper we characterize all trees with four and five distinct signless Laplacian ‎eigenvalues.‎‎‎


2021 ◽  
Vol 10 (1) ◽  
pp. 9-22
Author(s):  
Kate Lorenzen

Abstract Graphs can be associated with a matrix according to some rule and we can find the spectrum of a graph with respect to that matrix. Two graphs are cospectral if they have the same spectrum. Constructions of cospectral graphs help us establish patterns about structural information not preserved by the spectrum. We generalize a construction for cospectral graphs previously given for the distance Laplacian matrix to a larger family of graphs. In addition, we show that with appropriate assumptions this generalized construction extends to the adjacency matrix, combinatorial Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and distance matrix. We conclude by enumerating the prevelance of this construction in small graphs for the adjacency matrix, combinatorial Laplacian matrix, and distance Laplacian matrix.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


Sign in / Sign up

Export Citation Format

Share Document