scholarly journals Octahedral distortion-driven electrical and vibrational properties of A2ErTaO6 (A=Sr and Ca) double perovskite oxides

2018 ◽  
Vol 08 (04) ◽  
pp. 1850025
Author(s):  
Rajesh Mukherjee ◽  
Alo Dutta ◽  
T. P. Sinha

Rietveld refinement analysis indicates that [Formula: see text]ErTaO6 ([Formula: see text], Ca[Formula: see text] ceramics prepared by a solid-state route are crystallized in monoclinic perovskite phase with space group [Formula: see text]. Raman scattering and infrared spectroscopy are used to investigate the structure and phonon modes of the samples. Using Lorentzian lines, we have fitted the Raman spectra and the major Raman modes are assigned. Phonon vibrational frequency is modulated with the [Formula: see text]-site cationic change. Impedance spectra of the samples over the frequency range of 100[Formula: see text]Hz–1.1[Formula: see text]MHz are investigated at different temperatures from 303[Formula: see text]K to 573[Formula: see text]K. Cole–Cole relaxation of dielectric constant is modified with the electrical conduction parameter to describe the temperature dependence of dielectric constant. The frequency-dependent conductivity spectra follow the double power-law.

1998 ◽  
Vol 12 (11) ◽  
pp. 433-441 ◽  
Author(s):  
P. S. Rama Sastry ◽  
T. Bhimasankaram ◽  
G. S. Kumar ◽  
G. Prasad

Complex impedance spectra of ferroelectric mixed ceramic system ( Na 0.5 Bi 0.5)1-x Ca x Bi 4 Ti 4 O 15 with x=0, 0.1, 0.3, 0.5, 0.7 and 1 was studied as a function of frequency and temperature in the range 1 KHz to 10 MHz and 30°C to 620°C respectively. Equivalent circuits involving resistive and capacitive elements at different temperatures, activation energies of relaxations and conduction were evaluated using impedance plots. A comparative study of impedance and conductivity facilities an insight in understanding the electrical nature of these electroceramics.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Zul Hazrin Z. Abidin

Solid polymer electrolytes based on chitosan NaCF3SO3 have been prepared by the solution cast technique. X-ray diffraction shows that the crystalline phase of the pure chitosan membrane has been partially disrupted. The fourier transform infrared (FTIR) results reveal the complexation between the chitosan polymer and the sodium triflate (NaTf) salt. The dielectric constant and DC conductivity follow the same trend with NaTf salt concentration. The increase in dielectric constant at different temperatures indicates an increase in DC conductivity. The ion conduction mechanism follows the Arrhenius behavior. The dependence of DC conductivity on both temperature and dielectric constant (σdc(T,ε′)=σ0e−Ea/KBT) is also demonstrated.


2007 ◽  
Vol 336-338 ◽  
pp. 377-380 ◽  
Author(s):  
Jian Hong Shen ◽  
Ji Zhou ◽  
Xue Min Cui ◽  
Yue Hui Wang

A series of ferrroelectric-ferromagnetic composites were synthesized from BaTiO3 and NiFe2O4 ferrite by conventional solid-state route. XRD studies indicated that the composites comprised of only two phases, BaTiO3 phase with perovskite structure and NiFe2O4 phase with spinel structure. Frequency dependence of permittivity and permeability were also measured. Experimental results showed that the dielectric constant and initial permeability of these composites could be tunable by varying the composition of composites. Thus, these composites can be used for multilayer chips EMI filters.


2000 ◽  
Vol 655 ◽  
Author(s):  
L. J. Sinnamon ◽  
R. M. Bowman ◽  
J. M. Gregg

AbstractThin film capacitors with barium strontium titanate (BST) dielectric layers of 7.5 to 950 nm were fabricated by Pulsed Laser Deposition. XRD and EDX analyses confirmed a strongly oriented BST cubic perovskite phase with the desired cation stoichiometry. Room temperature frequency dispersion (ε100 kHz / ε100 Hz) for all capacitors was greater than 0.75. Absolute values for the dielectric constant were slightly lower than expected. This was attributed to the use of Au top electrodes since the same sample showed up to a threefold increase in dielectric constant when Pt was used in place of Au. Dielectric constant as a function of thicknesses greater than 70 nm, was fitted using the series capacitor model. The large interfacial parameter ratio di / εi of 0.40 ± 0.05 nm implied a significant dead-layer component within the capacitor structure. Modelled consideration of the dielectric behaviour for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/ ε against d at the dead layer thickness. For the SRO/BST/Au system studied, no anomaly was observed. Therefore, either (i) 7.5 nm is an upper limit for the total dead layer thickness in this system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect.


2014 ◽  
Vol 787 ◽  
pp. 338-341
Author(s):  
Cheng Hsing Hsu ◽  
Chia Hao Chang ◽  
Wen Shiush Chen ◽  
Jenn Sen Lin ◽  
Chun Hung Lai

Microwave dielectric properties and microstructures of (Ca0.8Sr0.2)ZrO3 ceramics prepared by the conventional solid-state route have been studied. The values of the dielectric constant (εr) were 22-26. The Q×f values of 10400–11500 GHz were obtained when the sintering temperatures were in the range of 1400–1490°C. The temperature coefficient of the resonant frequency τf was not sensitive to the sintering temperature. The εr value of 26, the Q×f value of 11500 GHz, and the τf value of-9 ppm/°C were obtained for (Ca0.8Sr0.2)ZrO3 ceramics sintering at 1490°C. The ceramic, (Ca0.8Sr0.2)ZrO3 is proposed as a suitable candidate material for application in highly selective microwave ceramic passive components.


2010 ◽  
Vol 24 (07) ◽  
pp. 665-670
Author(s):  
MOTI RAM

The LiCo 3/5 Fe 2/5 VO 4 ceramics has been fabricated by solution-based chemical method. Frequency dependence of the dielectric constant (εr) at different temperatures exhibits a dispersive behavior at low frequencies. Temperature dependence of εr at different frequencies indicates the dielectric anomalies in εr at Tc (transition temperature) = 190°C, 223°C, 263°C and 283°C with (εr) max ~ 5370, 1976, 690 and 429 for 1, 10, 50 and 100 kHz, respectively. Frequency dependence of tangent loss ( tan δ) at different temperatures indicates the presence of dielectric relaxation in the material. The value of activation energy estimated from the Arrhenius plot of log (τd) with 103/T is ~(0.396 ± 0.012) eV.


2021 ◽  
Vol 119 (6) ◽  
pp. 063104
Author(s):  
Yangbo Chen ◽  
Chuyun Deng ◽  
Yuehua Wei ◽  
Jinxin Liu ◽  
Yue Su ◽  
...  

2021 ◽  
Vol 900 ◽  
pp. 16-25
Author(s):  
Tabarak Mohammed Awad ◽  
May A.S. Mohammed

In this study, some optical properties were studied of the pure vinyl polyvinyl alcohol (PVA) nanopolymer (German origin). Under the influence of different temperatures and pressures of PVA. Where 25 samples were prepared for the purpose of conducting the research. Which studied the study of these samples was done by recording the absorbance and transmittance spectra of the wavelengths (200-900) nm. From them, absorbance, transmittance, reflectivity, absorption coefficient, refractive index, extinction coefficient, complex dielectric constant were calculated. At different temperatures (25,40, 80, 120, 160)°C. And with different pressures within the range (7.5,8,8.5,9,9.5) MPa. The results are that the permeability of the polymer (PVA) at different temperatures for each pressure decreases with increasing temperature, and that all other calculated optical properties increase with increasing temperature.


The present work studies the microstructural and electrical properties of La0.9Pb0.1MnO3 and La0.8Y0.1Pb0.1MnO3 ceramics synthesized by solid-state route method. Microstructure and elemental analysis of both samples were carried out by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) method, respectively. Phase analysis by X-ray diffraction (XRD) indicated formation of single phase distorted structure. The XRD data were further analyzed by Rietveld refinement technique. Raman analysis reveals that Y atom substitutes La site into the LPMO with shifting of phonon modes. The temperature variation of resistivity of undoped and Y-doped La0.9Pb0.1MnO3 samples have been investigated. The electrical resistivity as a function of temperature showed that all samples undergo an metal-insulator (M-I) transition having a peak at transition temperature TMI. Y-doping increases the resistivity and the metal-insulator transition temperature (TMI) shifts to lower temperature. The temperature-dependent resistivity for temperatures less than metal-insulator transition is explained in terms the quadratic temperature dependence and for T > TMI, thermally activated conduction (TAC) is appropriate. Variation of frequency dispersion in permittivity and loss pattern due to La-site substitution in LPMO was observed in the dielectric response curve.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jairo Roa-Rojas

We report structural analysis, surface morphology, magnetic ordering, dielectric response, optical feature and the electronic structure of the Dy2BiFeO6 novel complex perovskite. The samples were produced by the standard solid-state reaction recipe. Crystallographic analysis was performed by Rietveld refinement of experimental X-ray diffraction patterns. Results show that this material crystallizes in a perovskite with orthorhombic structure, which corresponds to the Pnma (#62) space group. From the Curie-Weiss fitting on the curve of susceptibility as a function of temperature we establish that the ordering corresponds to a paramagnetic-antiferromagnetic transition, with a Weiss temperature q=-18,5 K, which is compatible with the behavior of the inverse of susceptibility as a function of temperature, and a Néel temperatura TN=50,8 K. The Curie constant allowed for us to obtain an effective magnetic moment of 15,7 mB. The result of magnetization as a function of the applied field, measured at T=50 K, shows a magnetic hysteresis behavior that corroborate the magnetic ordering present for this temperature value. Measurements of the dielectric constant as a function of applied frequencies at room temperature give as a result a high relative dielectric constant (e=780). The reflectance curve as a function of the wavelength reveals the typical behavior of a double perovskite-like material and permits to obtain the energy gap 2,74 eV, which is characteristic of a semiconductor material.


Sign in / Sign up

Export Citation Format

Share Document