scholarly journals Micropalaeontology reveals the source of building materials for a defensive earthwork (English Civil War?) at Wallingford Castle, Oxfordshire

2010 ◽  
Vol 29 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Ian P. Wilkinson ◽  
Alison Tasker ◽  
Anthony Gouldwell ◽  
Mark Williams ◽  
Matt Edgeworth ◽  
...  

Abstract. Microfossils recovered from sediment used to construct a putative English Civil War defensive bastion at Wallingford Castle, south Oxfordshire, provide a biostratigraphical age of Cretaceous (earliest Cenomanian) basal M. mantelli Biozone. The rock used in the buttress – which may have housed a gun emplacement – can thus be tracked to the Glauconitic Marl Member, base of the West Melbury Marly Chalk Formation. A supply of this rock is available on the castle site or to the east of the River Thames near Crowmarsh Gifford. Microfossils provide a unique means to provenance construction materials used at the Wallingford site. While serendipity may have been the chief cause for use of the Glauconitic Marl, when compacted, it forms a strong, almost ‘road base’-like foundation that was clearly of use for constructing defensive works. Indeed, use of the Glauconitic Marl was widespread in the area for agricultural purposes and its properties may have been well-known locally.

2019 ◽  
Vol 3 ◽  
pp. 140-149 ◽  
Author(s):  
Alexis Simons ◽  
Alexandra Bertron ◽  
Christophe Roux ◽  
Aurélie Laborel-Préneron ◽  
Jean-Emmanuel Aubert ◽  
...  

The impact of building materials on the environment and the health of occupants is nowadays a priority issue. Ecological construction materials such as earthen materials are currently experiencing a regain of interest due to both ecological and economic factors. The microbial proliferation on indoor materials can induce a deterioration of the building air quality and lead to an increase of health risks for the occupants. The issue of indoor air quality raises questions about the use of earthen building materials and their possible susceptibility to fungal development. The microflora of earthen materials and their ability to grow on such support are indeed poorly studied. This study focused on the quantification of both bacterial and fungal microflora along the manufacturing process. The impact of extreme humidity, simulating a hydric accident, on microflora development was analyzed on the surface and inside earthen bricks. The initial microflora of these materials was dramatically reduced during the manufacturing process, especially after heat treatment for drying. Proliferation of remaining microorganisms was only observed under high humidity condition, in particular for earthen materials with vegetal aggregates. Moreover, in situ samplings were performed on naturally dried earthen materials used in buildings. The characterization of the microbial density revealed a higher microbial density than on manufactured specimens, while microbial concentration and detected taxa seemed mainly related to the room use and building history. These results provide a better understanding of microbial proliferation on these materials.


Author(s):  
Leopold Mbereyaho ◽  
Jean de Dieu Mutabaruka ◽  
Abaho G. Gershome ◽  
Armel Ineza ◽  
Ezra Ngirabatware

The construction industry is one of the rapidly growing and the cost analysis suggests that the materials cost is constantly increasing. The continuous extraction of aggregates intensively used in the field is negatively acting to the environment. Therefore research in construction materials should focus not only on discovering new alternative materials but also in appreciating the quality of those locally available for their better application. This research aimed at evaluating the performance of bamboo and mud bricks as two available local building materials, especially with regards not only to their strength but also to new performance concepts which are affordability, energy efficiency and environment friendly aspects. The study comprised mainly of laboratory tests of used materials and cost estimation analysis. Study results established that the considered bamboo and mud bricks, made in ordinary soils and reinforced by sisal fibers were reusable, environment friendly materials and energy efficient, with the bamboo showing the thermal conductivity equal to 0.1496 W/mK. Regarding the compressive strength, reinforced mud bricks with sisal fibers showed an increased value from 1.75 MPA to 4.29MPA, what was in line with related previous studies. The average compressive strength of the studied Arundinaria Alpine bamboo was established at 133,7MPA, while its tensile strength was 88.16MPA and these values were reasonable with comparison to other conventional materials. It is recommended that further research in checking the performance of other types of bamboo as well as about new construction technologies be undertaken in order to enhance the service life of both bamboo and mud bricks.Keywords: Affordability, Bamboo, Conventional concrete, Materials strength, Mud reinforced bricks, Sustainability


2012 ◽  
Vol 446-449 ◽  
pp. 220-241
Author(s):  
Al Taie Entidhar ◽  
Al Ansari Nadhir ◽  
Sven Knutsson

Humans realised the importance of housing since the dawn of history. The first man used the caves as shelter. When agricultural activities dominated the life style of humans, villages started to be constructed. Later these were developed into cities. The dawn of civilization started in Iraq. The inhabitants in that time used the available natural materials in their construction. Reviewing the progress of engineering practices of ancient Iraq, reveals the facts that the inhabitants were aware of the principles of construction and engineering. The materials used and the design of the buildings were very suitable from both environmental and engineering perspectives. This work is a critical review of the progress and development of engineering practices and construction materials used in ancient Mesopotamia


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1077A-1077
Author(s):  
Michael K. Bomford ◽  
Anthony Silvernail

Commercial vegetable growers in Kentucky have used high tunnels for year-round production for the past decade. They suggest it is a more energy-efficient and economical means of supplying off-season vegetables to the region than trucking field-grown produce from warmer regions. In 2005, we erected a 9 × 12-m high tunnel, designed to comply with National Organic Program standards, at the Kentucky State University Research Farm. We recorded the retail cost of each component, and estimated its embodied energy using published figures for common building materials. The materials used for construction were valued at $2830, and contained 59 GJ of embodied energy. The frame and plastic cladding accounted for 36% and 24% of the total capital cost, and 28% and 37% of the embodied energy, respectively, with other components accounting for the remainder. Assuming that the frame, plastic cladding and other components last 20, 4, and 10 years, respectively, the average cost of the tunnel is $328/year, and the average energy input is 8 GJ/year. The plastic cladding accounts for 50% of the annual amortized cost, and 66% of the embodied energy. If the structure is used to grow 2000 heads of lettuce each winter, and 450 kg of early market tomatoes each spring, it could generate sufficient income to recover the total cost of construction materials in its first year. Trucking this amount of produce from California to Kentucky would consume approximately 8 GJ. We conclude that there is an economic incentive for growers to adopt this technology, but no energy efficiency advantage to society. Longer tunnels, such as the 9 × 29-m models more commonly used by commercial vegetable growers in Kentucky, will be more energy- and capital-efficient.


Author(s):  
Etienne MALBILA ◽  
Fati ZOMA ◽  
David Y. K. TOGUYENI ◽  
Chris-veenem Methushael COMPAORE ◽  
Dieudonné Joseph BATHIEBO

This paper deals with building envelope thermal performance through a comparative study of the use of two types of construction materials, such as CEB and cement blocks, in order to introduce the use of double walls in sustainable buildings' construction. The building envelope participates in providing thermal comfort to users and in the optimal management of building energy consumption. This study begins with a survey of public preferences for building materials used in Burkina Faso. The results indicate that 76% of the people surveyed opt for cement blocks over local materials.  Concerning the thermal and specific energy performance, three variants of building envelope were studied: CEB walls, cement blocks and the double-wall (CEB + Cement blocks). It appears that the CEB walls are more efficient than the cement block walls. The introduction of double envelopes leads to the thermal resistance of 357.37m².K/W and reduces the heat flow from 85.32% to 90.24% compared to the wall made with CEB and cement blocks. This approach, which consists in mixing construction materials for good thermal insulation, allows improving the envelope thermal performance and the overall building energy performance.


2019 ◽  
Vol 802 ◽  
pp. 113-124
Author(s):  
Ruslan Aharonovich Abramov ◽  
Maksim Sergeevich Sokolov ◽  
Svetlana Vyacheslavovna Derevianko

Material consumption of production of building materials is determined by the amount of raw materials used for their production, to the total output. One of the ways to reduce material consumption is the use of industrial waste as the main raw material for the production of new construction products. Most of the waste generated as a result of the activities of enterprises are man-made raw materials for the production of products such as brick, lime, cement, etc.Given that man-made raw materials are similar to the natural composition and physical properties and even has a number of advantages (heat treatment, increased dispersion, etc.), the manufacture of building materials from it is usually profitable and justified [4, 5].


2014 ◽  
Vol 1043 ◽  
pp. 242-246 ◽  
Author(s):  
Syed Shujaa Safdar Gardezi ◽  
Nasir Shafiq ◽  
Noor Amila Wan Abdullah Zawawi ◽  
Syed Ahmad Farhan

The housing sector of Malaysia plays a very prominent role in meeting the major requirements of accommodation throughout the country. However, this sector consumes a handsome amount of resources among which the construction materials are a prime resource. Besides the valuable contribution of housing sector, the building materials used make a significant contribution in embodied CO2 emissions. In order to access the magnitude of CO2 from housing sector, it is necessary that effect of embodied CO2 emissions from the materials used in conventional housing construction in Malaysia shall also be studied. This study focuses on the embodied CO2 emission from the materials used in construction of a typical low cost house which are commonly adopted in Malaysia. The virtual model of selected single storey low cost house was developed using Building Information Modeling (BIM) concept. The results highlighted that bricks (37%), concrete (22%), mild steel (19%), steel rebar (7%) and roof tiles (6%) are the top five materials responsible for CO2 emissions. The overall contribution of single storey house in terms of embodied CO2 emissions is observed to be 34 kg-CO2 / sq. ft. This study has helped to highlight the potential contribution of conventional materials used in typical housing sector of Malaysia.


2022 ◽  
Vol 961 (1) ◽  
pp. 012027
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Safaa S. Mohammed ◽  
Noor R. Kadhim ◽  
Wail Asim Mohammad Hussain

Abstract Lightweight aggregates (LWA) are building materials with a lower bulk density than standard construction aggregates. In recent years, the contribution of industry to the circular economy has become a serious concern. Among these, the mining sector is confronted with significant problems relating to the management of a huge quantity of generated waste. The major contemporary task is to address a number of interconnected challenges, including waste management and recycling, conservation of scarce natural resources, reduction of energy use, and reduction of greenhouse gas emissions. Natural aggregates are consumed by the construction materials industry in the range of 8 to 12 billion tons per year. According to reports, the construction materials sector consumes the most energy and scarce natural resources (rocks, aggregates, and water) while also emitting greenhouse gases. In general, using waste material as lightweight aggregate decreases the concrete’s overall weight. The materials used as lightweight aggregate in concrete are discussed in this study. According to research, utilizing trash as a lightweight aggregate not only improves the characteristics of concrete but also gives a sustainable approach to minimize global waste.


2015 ◽  
Vol 1092-1093 ◽  
pp. 709-712
Author(s):  
Byeung Hun Son ◽  
Wha Me Park

Asbestos collectively refers to a set of naturally existing silicate minerals with fibrous structures, and is a natural mineral in fibrous forms that was originally serpentines or amphiboles. Because of its properties such as resistance to heat, chemical resistance and corrosion; tensile strength; sound absorption; and affordable prices, it had been widely used as building materials, fire resistant and retardant, thermal and heat insulation, sound absorbent, and electrical insulation. Since the prolonged inhalation of asbestos can cause serious illnesses such as lung cancer, mesothelioma, and asbestosis after an incubation period of 20 to 40 years, the mineral was classified as Group 1 carcinogen by the International Agency for Research on Cancer. In Korea, asbestos-containing construction materials had been widely used until asbestos was added to the hazardous substance requiring permission for use by the Occupational Safety and Health Act, and use of asbestos was totally banned in February 2009. This survey was conducted with 45 buildings to assess asbestos-containing materials used by usage of building. It was found that asbestos-containing construction materials were used in 27 buildings out of 45 buildings surveyed.


Sign in / Sign up

Export Citation Format

Share Document