scholarly journals GREASE: A Generative Model for Relevance Search over Knowledge Graphs

Author(s):  
Tianshuo Zhou ◽  
Ziyang Li ◽  
Gong Cheng ◽  
Jun Wang ◽  
Yu'Ang Wei
Author(s):  
Pengcheng Yang ◽  
Fuli Luo ◽  
Peng Chen ◽  
Lei Li ◽  
Zhiyi Yin ◽  
...  

The visual storytelling (VST) task aims at generating a reasonable and coherent paragraph-level story with the image stream as input. Different from caption that is a direct and literal description of image content, the story in the VST task tends to contain plenty of imaginary concepts that do not appear in the image. This requires the AI agent to reason and associate with the imaginary concepts based on implicit commonsense knowledge to generate a reasonable story describing the image stream. Therefore, in this work, we present a commonsense-driven generative model, which aims to introduce crucial commonsense from the external knowledge base for visual storytelling. Our approach first extracts a set of candidate knowledge graphs from the knowledge base. Then, an elaborately designed vision-aware directional encoding schema is adopted to effectively integrate the most informative commonsense. Besides, we strive to maximize the semantic similarity within the output during decoding to enhance the coherence of the generated text. Results show that our approach can outperform the state-of-the-art systems by a large margin, which achieves a 29\% relative improvement of CIDEr score. With additional commonsense and semantic-relevance based objective, the generated stories are more diverse and coherent.


2020 ◽  
Author(s):  
Yuyao Yang ◽  
Shuangjia Zheng ◽  
Shimin Su ◽  
Jun Xu ◽  
Hongming Chen

Fragment based drug design represents a promising drug discovery paradigm complimentary to the traditional HTS based lead generation strategy. How to link fragment structures to increase compound affinity is remaining a challenge task in this paradigm. Hereby a novel deep generative model (AutoLinker) for linking fragments is developed with the potential for applying in the fragment-based lead generation scenario. The state-of-the-art transformer architecture was employed to learn the linker grammar and generate novel linker. Our results show that, given starting fragments and user customized linker constraints, our AutoLinker model can design abundant drug-like molecules fulfilling these constraints and its performance was superior to other reference models. Moreover, several examples were showcased that AutoLinker can be useful tools for carrying out drug design tasks such as fragment linking, lead optimization and scaffold hopping.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Suzanna Schmeelk ◽  
Lixin Tao

Many organizations, to save costs, are movinheg to t Bring Your Own Mobile Device (BYOD) model and adopting applications built by third-parties at an unprecedented rate.  Our research examines software assurance methodologies specifically focusing on security analysis coverage of the program analysis for mobile malware detection, mitigation, and prevention.  This research focuses on secure software development of Android applications by developing knowledge graphs for threats reported by the Open Web Application Security Project (OWASP).  OWASP maintains lists of the top ten security threats to web and mobile applications.  We develop knowledge graphs based on the two most recent top ten threat years and show how the knowledge graph relationships can be discovered in mobile application source code.  We analyze 200+ healthcare applications from GitHub to gain an understanding of their software assurance of their developed software for one of the OWASP top ten moble threats, the threat of “Insecure Data Storage.”  We find that many of the applications are storing personally identifying information (PII) in potentially vulnerable places leaving users exposed to higher risks for the loss of their sensitive data.


2009 ◽  
Vol 20 (9) ◽  
pp. 2450-2461
Author(s):  
Mei WANG ◽  
Xiang-Dong ZHOU ◽  
Hong-Tao XU ◽  
Bai-Le SHI
Keyword(s):  

2018 ◽  
Vol 14 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Lin Zhang ◽  
Yanling He ◽  
Huaizhi Wang ◽  
Hui Liu ◽  
Yufei Huang ◽  
...  

Background: RNA methylome has been discovered as an important layer of gene regulation and can be profiled directly with count-based measurements from high-throughput sequencing data. Although the detailed regulatory circuit of the epitranscriptome remains uncharted, clustering effect in methylation status among different RNA methylation sites can be identified from transcriptome-wide RNA methylation profiles and may reflect the epitranscriptomic regulation. Count-based RNA methylation sequencing data has unique features, such as low reads coverage, which calls for novel clustering approaches. <P><P> Objective: Besides the low reads coverage, it is also necessary to keep the integer property to approach clustering analysis of count-based RNA methylation sequencing data. <P><P> Method: We proposed a nonparametric generative model together with its Gibbs sampling solution for clustering analysis. The proposed approach implements a beta-binomial mixture model to capture the clustering effect in methylation level with the original count-based measurements rather than an estimated continuous methylation level. Besides, it adopts a nonparametric Dirichlet process to automatically determine an optimal number of clusters so as to avoid the common model selection problem in clustering analysis. <P><P> Results: When tested on the simulated system, the method demonstrated improved clustering performance over hierarchical clustering, K-means, MClust, NMF and EMclust. It also revealed on real dataset two novel RNA N6-methyladenosine (m6A) co-methylation patterns that may be induced directly by METTL14 and WTAP, which are two known regulatory components of the RNA m6A methyltransferase complex. <P><P> Conclusion: Our proposed DPBBM method not only properly handles the count-based measurements of RNA methylation data from sites of very low reads coverage, but also learns an optimal number of clusters adaptively from the data analyzed. <P><P> Availability: The source code and documents of DPBBM R package are freely available through the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/DPBBM/.


2020 ◽  
pp. 1-13
Author(s):  
Takashi Matsubara ◽  
Kazuki Sato ◽  
Kenta Hama ◽  
Ryosuke Tachibana ◽  
Kuniaki Uehara

Sign in / Sign up

Export Citation Format

Share Document