scholarly journals Isomorphism, canonization, and definability for graphs of bounded rank width

2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.

2014 ◽  
Vol Vol. 16 no. 2 (PRIMA 2013) ◽  
Author(s):  
Ryuhei Uehara

Special issue PRIMA 2013 International audience The graph isomorphism (GI) problem asks whether two given graphs are isomorphic or not. The GI problem is quite basic and simple, however, it\textquoterights time complexity is a long standing open problem. The GI problem is clearly in NP, no polynomial time algorithm is known, and the GI problem is not NP-complete unless the polynomial hierarchy collapses. In this paper, we survey the computational complexity of the problem on some graph classes that have geometric characterizations. Sometimes the GI problem becomes polynomial time solvable when we add some restrictions on some graph classes. The properties of these graph classes on the boundary indicate us the essence of difficulty of the GI problem. We also show that the GI problem is as hard as the problem on general graphs even for grid unit intersection graphs on a torus, that partially solves an open problem.


2005 ◽  
Vol 5 (6) ◽  
pp. 492-506
Author(s):  
S.-Y. Shiau ◽  
R. Joynt ◽  
S.N. Coppersmith

The graph isomorphism problem (GI) plays a central role in the theory of computational complexity and has importance in physics and chemistry as well \cite{kobler93,fortin96}. No polynomial-time algorithm for solving GI is known. We investigate classical and quantum physics-based polynomial-time algorithms for solving the graph isomorphism problem in which the graph structure is reflected in the behavior of a dynamical system. We show that a classical dynamical algorithm proposed by Gudkov and Nussinov \cite{gudkov02} as well as its simplest quantum generalization fail to distinguish pairs of non-isomorphic strongly regular graphs. However, by combining the algorithm of Gudkov and Nussinov with a construction proposed by Rudolph \cite{rudolph02} in which one examines a graph describing the dynamics of two particles on the original graph, we find an algorithm that successfully distinguishes all pairs of non-isomorphic strongly regular graphs that we tested with up to 29 vertices.


2000 ◽  
Vol 65 (2) ◽  
pp. 777-787 ◽  
Author(s):  
Jörg Flum ◽  
Martin Grohe

One of the fundamental results of descriptive complexity theory, due to Immerman [13] and Vardi [18], says that a class of ordered finite structures is definable in fixed-point logic if, and only if, it is computable in polynomial time. Much effort has been spent on the problem of capturing polynomial time, that is, describing all polynomial time computable classes of not necessarily ordered finite structures by a logic in a similar way.The most obvious shortcoming of fixed-point logic itself on unordered structures is that it cannot count. Immerman [14] responded to this by adding counting constructs to fixed-point logic. Although it has been proved by Cai, Fürer, and Immerman [1] that the resulting fixed-point logic with counting, denoted by IFP+C, still does not capture all of polynomial time, it does capture polynomial time on several important classes of structures (on trees, planar graphs, structures of bounded tree-width [15, 9, 10]).The main motivation for such capturing results is that they may give a better understanding of polynomial time. But of course this requires that the logical side is well understood. We hope that our analysis of IFP+C-formulas will help to clarify the expressive power of IFP+C; in particular, we derive a normal form. Moreover, we obtain a problem complete for IFP+C under first-order reductions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Gabriel Cardona ◽  
Mercè Llabrés ◽  
Francesc Rosselló ◽  
Gabriel Valiente

Several polynomial time computable metrics on the class of semibinary tree-sibling time consistent phylogenetic networks are available in the literature; in particular, the problem of deciding if two networks of this kind are isomorphic is in P. In this paper, we show that if we remove the semibinarity condition, then the problem becomes much harder. More precisely, we prove that the isomorphism problem for generic tree-sibling time consistent phylogenetic networks is polynomially equivalent to the graph isomorphism problem. Since the latter is believed not to belong to P, the chances are that it is impossible to define a metric on the class of all tree-sibling time consistent phylogenetic networks that can be computed in polynomial time.


2021 ◽  
Vol 70 ◽  
pp. 1183-1221
Author(s):  
Alexander Shleyfman ◽  
Peter Jonsson

Symmetry-based pruning is a powerful method for reducing the search effort in finitedomain planning. This method is based on exploiting an automorphism group connected to the ground description of the planning task { these automorphisms are known as structural symmetries. In particular, we are interested in the StructSym problem where the generators of this group are to be computed. It has been observed in practice that the StructSym problem is surprisingly easy to solve. We explain this phenomenon by showing that StructSym is GI-complete, i.e., the graph isomorphism problem is polynomial-time equivalent to it and, consequently, solvable in quasi-polynomial time. This implies that it is solvable substantially faster than most computationally hard problems encountered in AI. We accompany this result by identifying natural restrictions of the planning task and its causal graph that ensure that StructSym can be solved in polynomial time. Given that the StructSym problem is GI-complete and thus solvable quite efficiently, it is interesting to analyse if other symmetries (than those that are encompassed by the StructSym problem) can be computed and/or analysed efficiently, too. To this end, we present a highly negative result: checking whether there exists an automorphism of the state transition graph that maps one state s into another state t is a PSPACE-hard problem and, consequently, at least as hard as the planning problem itself.


2009 ◽  
Vol 20 (03) ◽  
pp. 479-499
Author(s):  
SANGUTHEVAR RAJASEKARAN ◽  
VAMSI KUNDETI

The graph isomorphism problem is to check if two given graphs are isomorphic. Graph isomorphism is a well studied problem and numerous algorithms are available for its solution. In this paper we present algorithms for graph isomorphism that employ the spectra of graphs. An open problem that has fascinated many a scientist is if there exists a polynomial time algorithm for graph isomorphism. Though we do not solve this problem in this paper, the algorithms we present take polynomial time. These algorithms have been tested on a good collection of instances. However, we have not been able to prove that our algorithms will work on all possible instances. In this paper, we also give a new construction for cospectral graphs.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jördis-Ann Schüler ◽  
Steffen Rechner ◽  
Matthias Müller-Hannemann

AbstractAn important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equivalence classes and an effective equivalence test. Based on extensive computational experiments, we show that our algorithm is significantly faster than existing implementations within , and . We provide our Java implementation as an easy-to-use, open-source package (via GitHub) which is compatible with . It fully supports the distinction of different isotopes and molecules with radicals.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


Sign in / Sign up

Export Citation Format

Share Document