A Novel Hybrid Cache Coherence with Global Snooping for Many-core Architectures

2022 ◽  
Vol 27 (1) ◽  
pp. 1-31
Author(s):  
Sri Harsha Gade ◽  
Sujay Deb

Cache coherence ensures correctness of cached data in multi-core processors. Traditional implementations of existing protocols make them unscalable for many core architectures. While snoopy coherence requires unscalable ordered networks, directory coherence is weighed down by high area and energy overheads. In this work, we propose Wireless-enabled Share-aware Hybrid (WiSH) to provide scalable coherence in many core processors. WiSH implements a novel Snoopy over Directory protocol using on-chip wireless links and hierarchical, clustered Network-on-Chip to achieve low-overhead and highly efficient coherence. A local directory protocol maintains coherence within a cluster of cores, while coherence among such clusters is achieved through global snoopy protocol. The ordered network for global snooping is provided through low-latency and low-energy broadcast wireless links. The overheads are further reduced through share-aware cache segmentation to eliminate coherence for private blocks. Evaluations show that WiSH reduces traffic by and runtime by , while requiring smaller storage and lower energy as compared to existing hierarchical and hybrid coherence protocols. Owing to its modularity, WiSH provides highly efficient and scalable coherence for many core processors.

2017 ◽  
Vol 28 (7) ◽  
pp. 1905-1918 ◽  
Author(s):  
Lei Yang ◽  
Weichen Liu ◽  
Weiwen Jiang ◽  
Mengquan Li ◽  
Peng Chen ◽  
...  

2016 ◽  
Vol 26 (03) ◽  
pp. 1750037 ◽  
Author(s):  
Xiaofeng Zhou ◽  
Lu Liu ◽  
Zhangming Zhu

Network-on-Chip (NoC) has become a promising design methodology for the modern on-chip communication infrastructure of many-core system. To guarantee the reliability of traffic, effective fault-tolerant scheme is critical to NoC systems. In this paper, we propose a fault-tolerant deflection routing (FTDR) to address faults on links and router by redundancy technique. The proposed FTDR employs backup links and a redundant fault-tolerant unit (FTU) at router-level to sustain the traffic reliability of NoC. Experimental results show that the proposed FTDR yields an improvement of routing performance and fault-tolerant capability over the reported fault-tolerant routing schemes in average flit deflection rate, average packet latency, saturation throughput and reliability by up to 13.5%, 9.8%, 10.6% and 17.5%, respectively. The layout area and power consumption are increased merely 3.5% and 2.6%.


2016 ◽  
Vol 51 ◽  
pp. 225-234 ◽  
Author(s):  
Amin Rezaei ◽  
Masoud Daneshtalab ◽  
Farshad Safaei ◽  
Danella Zhao

Sign in / Sign up

Export Citation Format

Share Document