ApproxNet: Content and Contention-Aware Video Object Classification System for Embedded Clients

2022 ◽  
Vol 18 (1) ◽  
pp. 1-27
Author(s):  
Ran Xu ◽  
Rakesh Kumar ◽  
Pengcheng Wang ◽  
Peter Bai ◽  
Ganga Meghanath ◽  
...  

Videos take a lot of time to transport over the network, hence running analytics on the live video on embedded or mobile devices has become an important system driver. Considering such devices, e.g., surveillance cameras or AR/VR gadgets, are resource constrained, although there has been significant work in creating lightweight deep neural networks (DNNs) for such clients, none of these can adapt to changing runtime conditions, e.g., changes in resource availability on the device, the content characteristics, or requirements from the user. In this article, we introduce ApproxNet, a video object classification system for embedded or mobile clients. It enables novel dynamic approximation techniques to achieve desired inference latency and accuracy trade-off under changing runtime conditions. It achieves this by enabling two approximation knobs within a single DNN model rather than creating and maintaining an ensemble of models, e.g., MCDNN [MobiSys-16]. We show that ApproxNet can adapt seamlessly at runtime to these changes, provides low and stable latency for the image and video frame classification problems, and shows the improvement in accuracy and latency over ResNet [CVPR-16], MCDNN [MobiSys-16], MobileNets [Google-17], NestDNN [MobiCom-18], and MSDNet [ICLR-18].

Author(s):  
Amira Ahmad Al-Sharkawy ◽  
Gehan A. Bahgat ◽  
Elsayed E. Hemayed ◽  
Samia Abdel-Razik Mashali

Object classification problem is essential in many applications nowadays. Human can easily classify objects in unconstrained environments easily. Classical classification techniques were far away from human performance. Thus, researchers try to mimic the human visual system till they reached the deep neural networks. This chapter gives a review and analysis in the field of the deep convolutional neural network usage in object classification under constrained and unconstrained environment. The chapter gives a brief review on the classical techniques of object classification and the development of bio-inspired computational models from neuroscience till the creation of deep neural networks. A review is given on the constrained environment issues: the hardware computing resources and memory, the object appearance and background, and the training and processing time. Datasets that are used to test the performance are analyzed according to the images environmental conditions, besides the dataset biasing is discussed.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 456 ◽  
Author(s):  
Hao Cheng ◽  
Dongze Lian ◽  
Shenghua Gao ◽  
Yanlin Geng

Inspired by the pioneering work of the information bottleneck (IB) principle for Deep Neural Networks’ (DNNs) analysis, we thoroughly study the relationship among the model accuracy, I ( X ; T ) and I ( T ; Y ) , where I ( X ; T ) and I ( T ; Y ) are the mutual information of DNN’s output T with input X and label Y. Then, we design an information plane-based framework to evaluate the capability of DNNs (including CNNs) for image classification. Instead of each hidden layer’s output, our framework focuses on the model output T. We successfully apply our framework to many application scenarios arising in deep learning and image classification problems, such as image classification with unbalanced data distribution, model selection, and transfer learning. The experimental results verify the effectiveness of the information plane-based framework: Our framework may facilitate a quick model selection and determine the number of samples needed for each class in the unbalanced classification problem. Furthermore, the framework explains the efficiency of transfer learning in the deep learning area.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 443 ◽  
Author(s):  
Lianmeng Jiao ◽  
Xiaojiao Geng ◽  
Quan Pan

The belief rule-based classification system (BRBCS) is a promising technique for addressing different types of uncertainty in complex classification problems, by introducing the belief function theory into the classical fuzzy rule-based classification system. However, in the BRBCS, high numbers of instances and features generally induce a belief rule base (BRB) with large size, which degrades the interpretability of the classification model for big data sets. In this paper, a BRB learning method based on the evidential C-means clustering (ECM) algorithm is proposed to efficiently design a compact belief rule-based classification system (CBRBCS). First, a supervised version of the ECM algorithm is designed by means of weighted product-space clustering to partition the training set with the goals of obtaining both good inter-cluster separability and inner-cluster pureness. Then, a systematic method is developed to construct belief rules based on the obtained credal partitions. Finally, an evidential partition entropy-based optimization procedure is designed to get a compact BRB with a better trade-off between accuracy and interpretability. The key benefit of the proposed CBRBCS is that it can provide a more interpretable classification model on the premise of comparative accuracy. Experiments based on synthetic and real data sets have been conducted to evaluate the classification accuracy and interpretability of the proposal.


Sign in / Sign up

Export Citation Format

Share Document