scholarly journals RAN-aware Proxy-based Flow Control for High Throughput and Low Delay eMBB

2021 ◽  
Author(s):  
Mamoutou Diarra ◽  
Walid Dabbous ◽  
Amine Ismail ◽  
Thierry Turletti
2018 ◽  
Vol 246 ◽  
pp. 03005
Author(s):  
Fu Xiao ◽  
Li-ming Xiao

This paper proposes a hardware platform for WCDMA baseband data transmission, which consists of USB3.0 interface, general purposes processor (GPP), and software defined radio (SDR) system. In view of the requirements of WCDMA system, the hardware platform consisting of USB3.0 controller, FPGA and DDRII was selected, which finally realized the high throughput rate and low delay transmission of baseband data of WCDMA system. The experimental results show that in this GPP software defined radio system, the interface speed of USB3.0 can reach 200MBps, and the loopback delay time of the system is about 0.7ms, which can meet the requirements of WCDMA system.


2020 ◽  
Vol 6 (16) ◽  
pp. eaay8305 ◽  
Author(s):  
Yulieth Arango ◽  
Yuksel Temiz ◽  
Onur Gökçe ◽  
Emmanuel Delamarche

Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay protocol autonomously when used by a person with minimal training. Here, we present a versatile concept toward this goal by realizing programmable liquid circuits where liquids in capillary-driven microfluidic channels can be controlled and monitored from a smartphone to perform various advanced tasks of liquid manipulation. We achieve this by combining electro-actuated valves (e-gates) with passive capillary valves and self-vented channels. We demonstrate the concept by implementing a 5-mm-diameter microfluidic clock, a chip to control four liquids using 100 e-gates with electronic feedback, and designs to deliver and merge multiple liquids sequentially or in parallel in any order and combination. This concept is scalable, compatible with high-throughput manufacturing, and can be adopted in many microfluidics-based assays that would benefit from precise and easy handling of liquids.


2017 ◽  
Vol 38 (4) ◽  
Author(s):  
Mohammad Saleh Mehri ◽  
Akbar Ghaffarpour Rahbar

AbstractAn optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.


Sign in / Sign up

Export Citation Format

Share Document