Multi-ttach: Techniques to Enhance Multi-material Attachments in Low-cost FDM 3D Printing

2021 ◽  
Author(s):  
Nahyun Kwon ◽  
Himani Deshpande ◽  
Md Kamrul Hasan ◽  
Aryabhat Darnal ◽  
Jeeeun Kim
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Timothy Campbell ◽  
Jonathan Stone ◽  
Arun Parmar ◽  
Edward Vates ◽  
Amrendra Miranpuri

Introduction: While stroke remains a leading cause of death and disability, recent advances in endovascular technology an important opportunity to make a significant impact in clinical outcomes. However, training opportunities are rare, preventing dissemination of these techniques. Hands-on training is further complicated by the critical time to therapy associated with stroke treatment. This physical simulator was built for neurosurgical residents and fellows to practice mechanical thrombectomy. Methods: A simplified virtual model of the anterior cerebral circulation was created based on patient imaging. This luminal model was 3D printed using flexible filament and attached to a guide catheter at the proximal carotid to provide endovascular access and an IV tube at the distal M2 branches to permit outflow. A 7Fr sheath was also connected at the anterior cerebral artery to permit placement of a simulated clot model and simulate a proximal M1 occlusion. This entire construct was placed into a container of polyvinyl alcohol (PVA) and after crosslinking the flexible print was removed. Results: Using 3D printing technology and polymer hydrogels, a low-cost, high fidelity stroke model was achieved. Despite its simplified anatomy, the model permitted realistic wire and catheter navigation through the different segments of the internal carotid and middle cerebral arteries. The ACOM sheath provided a convenient method to reliably place an embolism and created a life-like proximal M1 occlusion. Recanalization was performed using the solumbra technique, which is used in live-patient cases. Conclusions: This model demonstrated proof of concept for a mechanical thrombectomy simulation. The angiographic profile and response to endovascular tools created a training experience similar to live endovascular procedures. As the model is perfected visually and mechanically, next steps are to perform validation studies and create a training curriculum.


2018 ◽  
Vol 90 (20) ◽  
pp. 12081-12089 ◽  
Author(s):  
Umme Kalsoom ◽  
Chowdhury Kamrul Hasan ◽  
Laura Tedone ◽  
Christopher Desire ◽  
Feng Li ◽  
...  

2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


2021 ◽  
Vol 22 (24) ◽  
pp. 13676
Author(s):  
Yuejiao Yang ◽  
Apoorv Kulkarni ◽  
Gian Domenico Soraru ◽  
Joshua M. Pearce ◽  
Antonella Motta

Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.


Sign in / Sign up

Export Citation Format

Share Document